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We consider ground states of quantum spin chains with symmetry-protected topological (SPT) order as re-
sources for measurement-based quantum computation (MBQC). We show that, for a wide range of SPT phases,
the computational power of ground states is uniform throughout each phase. This computational power, defined
as the Lie group of executable gates in MBQC, is determined by the same algebraic information that labels
the SPT phase itself. We prove that these Lie groups always contain a full set of single-qubit gates, thereby
affirming the long-standing conjecture that general SPT phases can serve as computationally useful phases of
matter.

PACS numbers: 03.67.Mn, 03.65.Ud, 03.67.Ac

Introduction. In many-body physics, the essential proper-
ties of a quantum state are determined by the phase of mat-
ter in which it resides. Recent years have witnessed tremen-
dous progress in the discovery and classification of quantum
phases [1–10], and it is thus pertinent to ask: what can a phase
of matter be used for? A traditional example is the ubiq-
uitous superconductor, while newly discovered phases such
as topological insulators [11] and quantum spin liquids [12]
have promising future applications. Quantum phases are use-
ful in quantum information processing as well: certain topo-
logical phases allow for error-resilient topological quantum
computation via the braiding and fusion of their anyonic ex-
citations [13, 14]. These applications all operate due to prop-
erties of a phase rather than a particular quantum state, hence
they enjoy passive protection against certain sources of noise
and error.

In this letter, we establish a general connection between the
symmetry-protected topological (SPT) phases in one dimen-
sion (1D) [3–5] and quantum computation. To do this we use
the framework of measurement-based quantum computation
(MBQC) [15, 16], in which universal computation is possible
using only single-body measurements on an entangled many-
body system. The computational power of an MBQC scheme,
defined by the set of logical gates that can be performed using
measurements, is related to the entanglement structure of the
many-body ground state. Whether this computational power
is particular to individual states, or a property of a phase as
above, is a long-standing open problem [17–29]. An impor-
tant early result showed that every ground state within certain
SPT phases has the ability to faithfully transport quantum in-
formation along a 1D chain; however, “universal” single-qubit
gates appeared to be properties only of special points in the
phases [27]. Later, it was shown that, for one particular SPT
phase (namely one that is protected by S4 symmetry), uni-
versal single-qubit gates can be implemented throughout the
entire phase [23]. Yet, it remains unknown whether a general
SPT phase can serve as such a computational phase of matter.

Here, we construct a general computational scheme that
harnesses the part of a ground state that is fully constrained by

Figure 1. In the same way that the language of category the-
ory allows us to classify gates that can be executed by braid-
ing the anyonic excitations of topologically ordered systems in
2D [14, 30, 31], group cohomology determines the gates imple-
mentable in measurement-based quantum computation using 1D re-
source states with symmetry-protected topological order.

symmetry. This part is uniform throughout the SPT phase, and
therefore the computational power in our scheme is a prop-
erty of SPT phases rather than individual states. This power
is determined by the same algebraic structure that is used to
classify the SPT phases, namely group cohomology. This es-
tablishes a firm connection between SPT order and the com-
putational power of many-body ground states.

We can use this connection to prove that universal single-
qubit gates are a property of all phases considered by
Ref. [27], and many more. Going beyond this, we identify
classes of phases that also allow operations on qudits of ar-
bitrarily large dimension. Overall, our results highlight how
the algebraic classification of quantum phases can contribute
to the study of the structures responsible for quantum compu-
tational power, as outlined in Fig. 1

In the following, we begin by reviewing the virtual space
picture of MBQC [32], which aids our subsequent analysis.
We then introduce the three key elements of our scheme,
and demonstrate their use through the examples of the AKLT
state and the Haldane phase before generalizing to other SPT
phases. We finish by using the algebraic classification of SPT
phases to determine their computational power.

Computation in Virtual Space. We consider MBQC in the
virtual space picture, where states are represented in the ma-
trix product state (MPS) form [33]. The wave function |ψ〉 of
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a 1D system of N interacting sites of local dimension d (i.e.
a spin chain) can be written in MPS form by introducing the
square matrices Ai, i = 0, . . . , d− 1, such that

|ψ〉 =
∑

i1,...,iN

〈R|AiNAiN−1 . . . Ai1 |L〉|i1 . . . iN 〉, (1)

where |R〉, |L〉 are states in the so-called “virtual space” that
encode the boundary conditions of the finite chain. The MPS
formalism leads to a useful interpretation of MBQC which
occurs in virtual space [32]: measuring the leftmost spin
in the chain with outcome |s〉 reduces chain length by one
and evolves the virtual system as |L〉 →

(∑
i〈s|i〉Ai

)
|L〉.

With a proper choice of measurement basis, this can corre-
spond to unitary evolution and can simulate computation up
to outcome-dependent byproduct operators. Since we con-
sider only 1D resource states, we say a state is universal if
measurement can induce a full set of gates for a single qudit,
corresponding to operators in SU(D) on some D-level sub-
space in virtual space.

A simple example is the spin-1 AKLT state, which is well-
known to be a universal resource [34]. The MPS matrices
are the Pauli matrices, Ai = σi, with respect to the wire ba-
sis B = {|x〉, |y〉, |z〉} where |i〉 is the 0 eigenstate of the
spin-1 operator Si. To achieve a rotation by θ about the z-
axis, we measure in the basis B(z, θ) = {|θx〉, |θy〉, |z〉} ≡{
cos θ2 |x〉 − sin θ

2 |y〉, sin
θ
2 |x〉+ cos θ2 |y〉, |z〉

}
and propa-

gate the byproducts σx, σy , and σz , respectively. We enact
byproduct propagation via symmetry transformations of fu-
ture measurement bases, as described in Ref. [22]. With this,
the first two outcomes give the desired rotation by θ while
the third does nothing, so the gate is probabilistic with suc-
cess probability 2

3 . Rotations about the x-axis can be achieved
similarly, giving a full set of SU(2) operations.

To extend the universality of the AKLT state and others like
it to entire SPT phases, we introduce three modifications to the
usual MBQC procedure, as described in Fig. 2. The purpose
and justification of each are given in the following section,
using the AKLT state and Haldane phase as examples.

Computation in the Haldane phase. We begin this section
by introducing the “mixed state interpretation” of MBQC that
will be used throughout this letter. Here we argue its validity,
with a formal proof given in the Supplemental Material [35].
We define a computation by a sequence of n measurement
bases, which are fixed modulo byproduct propagation. In gen-
eral, an input state |ψ〉 will be taken to a final state |ψ~s〉 which
depends on the measurement outcomes ~s = (s1, . . . , sn).
Then we measure some observable O on |ψ~s〉, whose eigen-
values oi appear with probability p(oi|~s). To garner measure-
ment statistics of O, we must repeat the computation, where-
upon the full statistics are given by p(oi) =

∑
~s p(oi|~s)p~s

where p~s is the probability of outcomes ~s. These statistics are
encoded in the mixed state σ̂ =

∑
~s p~s|ψ~s〉〈ψ~s|, for instance

〈O〉 =
∑
~s p~s〈ψ~s|O|ψ~s〉 ≡ Tr (Oσ̂). Hence in this proba-

bilistic scenario the computational output must be interpreted
to be σ̂.

Figure 2. Illustration of the measurements needed to execute a ro-
tation about the z-axis in the Haldane phase example. Our scheme
consists of three modifications to the usual MBQC procedure: (1)
In analysis of the scheme, measurement outcomes are summed over,
such that the computational output is interpreted as a mixed state, (2)
finite rotations are split into smaller pieces dθ that each differ only
slightly from the identity, and (3) consecutive gates are separated by
many applications of the identity gate.

To determine the mixed state σ̂, we simply sum over all
possible outcomes of each measurement. It is crucial that this
sum-over-outcomes is implemented after byproduct propaga-
tion, making it very different from simply tracing over each
spin in the chain. The byproducts accumulated at the end
of the computation affect the basis of computational readout,
during which we do not sum over outcomes. By analysing the
computation in this way, we can design a sequence of mea-
surement bases such that σ̂ approximates the desired output. If
the computation defined by this sequence of measurements is
repeated many times, it will deterministically produce the de-
sired measurement statistics of any observableO, even though
each run of the algorithm may produce a different output state
that is meaningless on its own.

Let us return to the AKLT state as an example. By mea-
suring in the basis B(z, θ) and summing over measurement
outcomes, we find that an initial state |L〉〈L| becomes:

σ̂ =
2

3
e−iθσz/2|L〉〈L|eiθσz/2 +

1

3
|L〉〈L|. (2)

Since the original gate is probabilistic, this is a mixed state
and does not represent unitary evolution. However, for small
angles dθ, it is unitary up to first order:

σ̂ = e−i
2
3dθσz/2|L〉〈L|ei 23dθσz/2 +O(dθ2). (3)

So for small rotation angles dθ, the mixed output state is our
initial state rotated by a reduced angle 2

3dθ about the z-axis.
Restriction to gates that are close to the identity is an unavoid-
able consequence of the mixed state interpretation, and finite
rotations must be split into many infinitesimal pieces [36].
The number of measurements needed to execute a unitary gate
with rotation angle θ and admissible error ε isO(θ2/ε); details
can be found in Sec. II of the Supplemental Material.

The AKLT state is in the Haldane phase, which we define
as the SPT phase protected by on-site Z2×Z2 symmetry [37].
Every state in the Haldane phase can be viewed as an AKLT
state with some additional entanglement that encodes the mi-
croscopic details of the state. This is formally expressed in
terms of the MPS matrices, which factorize as Ai = σi ⊗ Bi
in the wire basis B [27]. The Pauli part acts in the logical sub-
space into which information is encoded and processed. The
matricesBi act in the junk subspace and contain all of the mi-
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croscopic details of the state. Importantly, byproduct propa-
gation via symmetry transformations acts only within the log-
ical subspace. This is not a problem for measurements in the
wire basis, which evolve the two subsystems independently.
But measurements in other bases will mix the junk and logi-
cal subspaces, which hides the logical information and intro-
duces an unavoidable outcome dependence into the computa-
tion. We now show how the mixed state interpretation allows
us to solve both of these problems in a relatively simple way.

Consider a measurement in the infinitesimally tilted basis
B(z, dθ). Without loss of generality, we assume that our ini-
tial state is factorized across the subspaces as |φ〉〈φ| ⊗ ρfix,
for a particular fixed point state ρfix that will be defined later.
If we get the outcome |θx〉 and propagate σx on the logical
subspace, our state becomes:

|φ〉〈φ| ⊗ ρfix → |φ〉〈φ| ⊗BxρfixB
x† (4)

+ i
dθ

2

(
|φ〉〈φ|σz ⊗BxρfixB

y† − σz|φ〉〈φ| ⊗ByρfixB
x†) ,

up to first order in dθ. We see that the two subsystems are
no longer factorized, and the logical state |φ〉〈φ| is no longer
accessible.

To remedy this, we will flow the junk subspace towards
a fixed point. This is accomplished by simply measuring
a large number of spins in the wire basis. In the mixed
state interpretation, a measurement in the wire basis fol-
lowed by logical byproduct propagation effects the operation
I ⊗

∑
iB

i(·)Bi† ≡ I ⊗ Ẽ . Since every state in the Hal-
dane phase is short-range correlated, the channel Ẽ will have a
unique fixed point, which is ρfix, with all other eigenvalues of
modulus less than unity [22]. Hence measuringm consecutive
spins in the wire basis results in the linear channel I⊗Ẽm and
projects the junk subspace onto the fixed point ρfix. The pro-
jection occurs exponentially fast over the correlation length ξ
of the state.

Applying this to Eq. 4, which must be summed with its
counterparts for the other measurement outcomes |θy〉 and |z〉,
we find that for large enough m,

σ̂ =

(
ν|φ〉〈φ|+ i

dθ

2
(νxy + νyx) [|φ〉〈φ|, σz]

)
⊗ ρfix, (5)

where we have defined limm→∞ Ẽm(BiρfixB
j†) = νijρfix

and ν = νxx + νyy + νzz . Up to first order in dθ, this cor-
responds to a unitary rotation acting on the logical subspace:

T (z, dθ) = exp

{
−idθ

(
νxy + νyx

2ν

)
σz
}
. (6)

Hence, making a measurement in the rotated basisB(z, dθ),
followed by a series of measurements in the wire basis, pro-
duces the desired rotation of the virtual state |φ〉 up to a scal-
ing factor νxy+νyx

ν . As long as this factor is non-zero, it can
be measured on the chain prior to computation by attempting
a finite rotation (split into small pieces), and measuring the re-
duction in rotation angle [38]. The parameters νij contain all

relevant microscopic details of our resource state |ψ〉. Since
they can be measured during a calibration step, any state in
the phase can be used as a resource without prior knowledge
of its identity.

We can repeat the above procedure for rotations about the
x-axis to generate all of SU(2). Hence every state in the Hal-
dane phase, with the exception of a null subset in which some
of the constants νij are 0, has the same computational power
as the AKLT state (which satisfies νij = 1

3 ∀i, j). To complete
the scheme, we would require a method to read out and ini-
tialize the virtual state which also works throughout the phase.
This can be done without the need of ancillary systems on the
boundaries [38].

Generalization to Other Phases. Our scheme does not
depend on any properties that are particular to the Haldane
phase, so it can be generalised to a large class of other SPT
phases. A general 1D SPT phase without symmetry break-
ing is defined with respect to an on-site symmetry group G
such that u(g)⊗n|ψ〉 = |ψ〉 for some unitary representa-
tion u of G. The phase is then labelled by a cohomology
class [ω] ∈ H2(G,U(1)) in the second cohomology group
of G which describes how this symmetry acts in the virtual
space [3].

The Haldane phase is an example of a maximally non-
commutative SPT phase, as defined in Ref. [27]. Such phases
satisfy all conditions needed to apply our methods, namely
the existence of a logical subspace and the ability to propa-
gate byproduct operators within it. Indeed, suppose that G is
finite abelian and [ω] is maximally non-commutative, mean-
ing {g ∈ G|ω(g, g′) = ω(g′, g) ∀g′ ∈ G} = {e}. By diag-
onalizing the representation u, we obtain the wire basis B =
{|0〉, . . . , |d− 1〉} such that u(g)|i〉 = χi(g)|i〉 ∀g ∈ Gwhere
χi(g) are linear characters of G. Maximal non-commutativity
then implies the MPS tensor Ai can be written in the wire
basis as [27]:

Ai = Ci ⊗Bi, (7)

whereCi areD×D unitary and trace-orthogonal matrices and
D =

√
|G| is the dimension of our logical subspace [39]. Ci

can be determined uniquely from G, [ω], and χi as described
in the Supplemental Material. In general, if some group G
has a finite abelian subgroup H such that [ω|H ] is maximally
non-commutative, we can make the exact same argument with
H taking the place of G everywhere. This means the follow-
ing results also apply to certain non-abelian groups and Lie
groups.

Now we follow the same steps used to perform compu-
tation in the Haldane phase. Measurement in the slightly
tilted basis B(i, j; dθ, ϕ) = {|0〉, . . . , |i〉 + dθeiϕ|j〉, |j〉 −
dθe−iϕ|i〉, . . . , |d− 1〉}, followed by measurements in B to
drive the junk subspace to a fixed-point state, induces an in-
finitesimal rotation in the logical subspace:

T (i, j; dθ, ϕ) = (8)

exp

{
dθ
|νij |
ν

(
ei(ϕ+δij)Ci†Cj − e−i(ϕ+δij)Cj†Ci

)}
,
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where νij = |νij |eiδij is as defined earlier and ν =
∑d−1
i=0 νii.

As before, the microscopic details of the state enter only
as these measurable constants. Computation can only pro-
ceed if these constants are non-zero, which is satisfied for all
but a null set of states. With knowledge of these constants,
B(i, j; dθ, ϕ) can be chosen such that the primitive gates are
generated by elements of the set of anti-hermitian operators:

O =
{
αCi†Cj − α∗Cj†Ci

}
(9)

with i, j = 0 . . . d− 1, i 6= j, |α| � 1. Furthermore, we have
edθAedθBe−dθAe−dθB ≈ e(dθ)2[A,B], so that our infinitesimal
generators form a real Lie algebra which in turn generates a
Lie group L[O] of executable gates.

From the above, we can see the main strength of our meth-
ods. Given only the algebraic quantities G, u, and [ω] which
describe the SPT phase of our resource state, we are able to
define a complete MBQC scheme, including the set of gates
and the measurements needed to execute them. The compu-
tational power of each state in the phase is uniformly defined
as the Lie group L[O], which is completely determined by
the same algebraic quantities. This signifies the existence of a
deep connection between SPT order and MBQC via the lan-
guage of group cohomology.

Determining Computational Power. To determine the com-
putational power of a phase, we must identify the Lie group
L[O]. We will do this by taking advantage of the algebraic
structure inherited from the SPT phase classification. Con-
sider first the case where the representation u|H contains all
non-trivial characters of the subgroup H . This means that O
contains D2 − 1 trace-orthogonal, antihermitian operators, so
L[O] ∼= SU(D). If the Hilbert space dimension of our physi-
cal sites is smaller thanD2−1, or certain characters χi do not
appear in u|H , L[O] may be some Lie subgroup of SU(D).
However, with the condition of maximal non-commutativity,
this subgroup is always universal on a qudit system, as stated
in the following theorem:

Theorem 1. Consider an SPT phase defined by an on-site
symmetry group G and cohomology class [ω]. Suppose there
exists a finite abelian subgroup H ⊂ G such that [ω|H ] is
maximally non-commutative, and let pn be a prime power di-
viding

√
|H|. Then L[O] ⊃ SU(pn).

This result, proven in the Supplemental Material, determines
the minimal computational power of the phase, which is in-
dependent of u and hence uniform amongst the phase. This
shows that 1D ground states with SPT order are generically
useful as MBQC resources.

Beyond this minimal case, L[O] can often be expanded
to gain additional computational power. For example when
H = (Z2)

4, our theorem guarantees that SU(2) ⊂ L[O], but
this can be expanded to either SU(4) or SU(2)× SU(2) de-
pending on the on-site symmetry representation u. So, while
changing u is generally considered to not change the SPT
phase of a system [4], it remains an important label for to-
tal computational power in our scheme. If, however, we allow

ourselves to redefine the locality of measurements by block-
ing neighbouring sites, L[O] will always equal SU(D) after
sufficient blocking.

Now we must ask: which symmetry groups protect phases
that satisfy our theorem? To answer this in general is a
difficult problem of group cohomology, but we can identify
some particularly relevant examples. When G is a classi-
cal Lie group (except Spin(4n)), there is a subgroup of the
form ZN × ZN ⊂ G such that H2(G,U(1)) ∼= H2(ZN ×
ZN , U(1)) [40, 41]. Since ZN × ZN protects a maximally
non-commutative phase [27, 42], G must protect a phase
which satisfies our theorem. The same can be said for any
subgroup G′ such that ZN × ZN ⊂ G′ ⊂ G. This has al-
ready been observed in Ref. [24] for the groups D4, A4, S4 ⊂
SO(3), which each contain Z2 × Z2. Another example is the
class of groups for which the subgroup H specified in Theo-
rem 1 appears as a (semi)direct factor, that is G = H ′ o H
for some subgroupH ′ which could represent eg. time reversal
symmetry [43].

Conclusion. By introducing three simple modifications to
the usual MBQC procedure, we showed that the MBQC power
of an SPT-ordered ground state of a spin chain is determined
solely by the cohomological information that labels the cor-
responding SPT phase, and that this power is always suffi-
cient for universal computation on a single qudit. Regarding
the algebraic classification of phases of matter and its role in
quantum computation, our results show that group cohomol-
ogy links SPT order and MBQC in 1D, in the same way that
modular tensor categories link topological order and topologi-
cal quantum computation in 2D [14, 30, 31]. In each case, the
algebraic framework that classifies the phases of matter also
classifies their computational properties. Whether this extends
to higher dimensions and other types of quantum phases is an
intriguing question at the intersection of quantum information
and condensed matter physics. There is already evidence that
SPT order in higher dimensions can lead to unique computa-
tional properties [21, 26, 29, 44–47]. It would also be inter-
esting to see whether the mathematical frameworks that unify
topological order and SPT order, such as G-crossed braided
tensor categories [6], could also describe computation with
systems that have both types of order.

This work is supported by NSERC, the Canadian Insti-
tute for Advanced Research (Cifar), and the National Science
Foundation under Grant No. PHY 1620252. R.R. is a fellow
of the Cifar Quantum Information Science program.
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