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We consider wall-to-wall transport of a passive tracer by divergence-free velocity vector fields u.
Given an enstrophy budget 〈|∇u|2〉 ≤ Pe2 we construct steady two-dimensional flows that transport

at rates Nu(u) & Pe2/3/(logPe)4/3 in the large enstrophy limit. Combined with the known upper

bound Nu(u) . Pe2/3 for any such enstrophy-constrained flow, we conclude that maximally trans-

porting flows satisfy Nu ∼ Pe2/3 up to possible logarithmic corrections. Combined with known
transport bounds in the context of Rayleigh-Bénard convection this establishes that while suitable
flows approaching the “ultimate” heat transport scaling Nu ∼ Ra1/2 exist, they are not always
realizable as buoyancy-driven flows. The result is obtained by exploiting a connection between the
wall-to-wall optimal transport problem and a closely related class of singularly perturbed variational
problems arising in the study of energy-driven pattern formation in materials science.

Introduction – Modeling, measuring, and controlling the
transport properties of incompressible flows is a funda-
mental aspect of fluid mechanics with myriad applica-
tions in engineering and the applied sciences. In some
cases the transport of heat or trace concentrations of im-
purities is passive, i.e., the thermal energy or mass mark-
ers are carried without essentially altering the flow. In
other settings the transport is active as is the situation
when heat or dissolved mass alters the fluid density to
produce buoyancy forces in the presence of a gravita-
tional field, or more generally for momentum transport
responsible for the transmission of drag forces. In this
Letter we study the primary problem of passive tracer
transport between parallel walls by a combination of
molecular diffusion and fluid advection when the tracer
concentration is set at the walls to determine the maxi-
mum transport increase over diffusion alone that incom-
pressible flows of a given intensity can induce. The results
are of interest in their own right but they also have im-
plications for the active transport problem of buoyancy-
driven turbulent convection.
The mathematical formulation is as follows. The spa-

tial domain Ω is periodic in x and y with rigid walls at
z = 0 and z = 1. The tracer field T (x, y, z, t), referred to
as temperature, satisfies the advection-diffusion equation

∂tT + u · ∇T = ∆T (1)

in Ω with boundary conditions T |z=0 = 1 and T |z=1 = 0

where u = îu + ĵv + k̂w is an arbitrary divergence-free
velocity field with no-slip boundary conditions u|∂Ω = 0.
These are dimensionless variables: lengths are measured
in units of h, time in units of h2/κ, and u in units of κ/h
where h is the wall-to-wall distance and κ is the thermal
diffusivity. T is measured in units of the temperature
drop across the layer.
The Nusselt number Nu is a measure of enhancement

of wall-to-wall transport relative to pure conduction: it
is the ratio of total convective to conductive vertical heat

flux given here by

Nu(u) = 1 + 〈wT 〉 (2)

where 〈·〉 indicates the long-time and space average.
We are concerned with the design of incompressible
flows that, subject to an intensity budget 〈|∇ × u|2〉 =
〈|∇u|2〉 ≤ Pe2, maximize wall-to-wall heat transport:

F (Pe) = max
〈|∇u|2〉≤Pe2

Nu(u). (3)

The non-dimensional Péclet number Pe is a measure of
advective intensity relative to that of diffusion and we
take it to be the (maximum allowable) root mean square
rate of strain, equivalent here to the square root of the
mean enstrophy. We are particularly interested in the
behavior of the maximal transport F (Pe) as Pe→ ∞.

Our motivation is twofold. First, while the wall-to-wall
optimal transport problem is both easy to state and natu-
ral from a practical point of view—the power required to
sustain such a Newtonian fluid flow is proportional to its
mean square rate of strain—it turns out to be quite chal-
lenging to identify the salient properties of optimal flows
in the large enstrophy limit. In the energy-constrained
problem where the budget is set by the kinetic energy, the
optimal transport scaling is captured by a simple convec-
tion roll design [1]. The enstrophy-constrained problem
considered here is substantially more subtle: numerical
work [1, 2] suggests that optimal flows are not simple con-
vection rolls, but instead more complex designs featuring
near wall recirculation zones whose fine-scale features are
yet to be described.

Second, the wall-to-wall optimal transport problem
can be used to derive absolute limits on the rate of
heat transport in Rayleigh-Bénard convection (RBC),
the buoyancy-driven flow of fluid heated from below and
cooled from above [3]. In the Boussinesq approximation
RBC is modeled by supplementing (1) with the forced
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Navier-Stokes equations

∂tu+ u · ∇u+∇p = Pr∆u+ Pr Ra k̂T (4)

for the divergence-free velocity field u(x, y, z, t) where Pr
and Ra are the Prandtl and Rayleigh numbers. It is a
long-standing question to determine rigorousNu–Pr–Ra
relationships for RBC. The best known rigorous result
that applies uniformly in Pr for no-slip boundaries is
Nu . Ra1/2 for Ra ≫ 1 [4–7], i.e., the so-called “ulti-
mate” heat transport scaling [8].
Dotting u into equation (4), integrating by parts and

time averaging reveals that
〈

|∇u|2
〉

= Ra · (Nu − 1).
Thus, by the definition (3) of wall-to-wall optimal trans-
port,

Nu ≤ F (Ra · (Nu− 1)) .

This optimal wall-to-wall approach for proving abso-
lute limits on the rate of heat transport by RBC flows
was proposed as a potentially more powerful alterna-
tive to the established methods [1]. Here the advection-
diffusion equation (1) is imposed as a point-wise con-
straint, whereas previous analyses utilized only certain
mean/moment balances derived from the governing equa-
tions. Therefore, the wall-to-wall optimal transport ap-
proach has the propensity to produce better bounds on
Nu as a function ofRa. Moreover, it produces explicit in-
compressible flow fields realizing optimal transport which
are of interest in their own right.
The aforementioned methods for deriving upper

bounds in RBC applied here prove that F (Pe) . Pe2/3

for Pe ≫ 1 (see, e.g., [2]). In this Letter we explore the
sharpness of this a priori estimate insofar as its scaling
is concerned. Our methods shed light on the nature of
maximally transporting flows and make precise what is
gained in the context of rigorous bounds in RBC by en-
forcing (1) pointwise. To this end we construct steady
no-slip incompressible flows {uPe} such that

〈

|∇uPe|2
〉

≤ Pe2 and Nu(uPe) &
Pe2/3

(logPe)4/3
(5)

for all Pe≫ 1 to conclude that incompressible flows can
indeed achieve Nu ∼ Pe2/3 up to possible logarithmic
corrections. To obtain the result we exploit an interesting
and perhaps unexpected connection between the wall-
to-wall optimal transport problem and optimal design
problems arising for energy-driven pattern formation in
materials science [9].
The rest of this Letter is organized as follows. First we

derive a variational formulation for the transport rate of
an arbitrary steady incompressible flow. Then we intro-
duce a Lagrange multiplier for the enstrophy constraint
to discover a direct analog of Howard’s variational prob-
lem for RBC [4] in the context of wall-to-wall optimal
transport. The resulting problem is reminiscent of ques-
tions in materials science, inspiring construction of the

nearly optimal flows. We end with further discussion of
connections between fluid dynamical and materials sci-
ence variational problems.

Variational formulation for transport rates – We begin
by deriving variational formulations for the rate of heat
transport, inspired by variational formulations for the
effective diffusivity in periodic homogenization [10]. (See
also [11, 12].) The methods laid out there for periodic
domains can be adapted to our domain as well. And we
may restrict attention to steady velocity fields: indeed,
the maximal unsteady transport rate is no less than its
steady counterpart.
The steady temperature deviation θ = T+z−1 satisfies

u · ∇θ = ∆θ + w (6)

with boundary conditions θ|∂Ω = 0. Then Nu(u)− 1 =
〈

|∇θ|2
〉

= 〈wθ〉 and we can state dual variational formu-
lations for it:

Nu(u)− 1

= min
η:η|∂Ω=0

〈

|∇η|2
〉

+
〈

|∇∆−1(−w + u · ∇η)|2
〉

(7)

= max
ξ:ξ|∂Ω=0

2 〈wξ〉 −
〈

|∇∆−1u · ∇ξ|2
〉

−
〈

|∇ξ|2
〉

(8)

where ∆−1 is the inverse Laplacian operator with Dirich-
let boundary conditions on ∂Ω.
To see these consider the pair of equations

±u · ∇θ± = ∆θ± + w.

Then ξ = 1
2
(θ+ + θ−) and η = 1

2
(θ+ − θ−) satisfy

u · ∇η = ∆ξ + w, (9)

u · ∇ξ = ∆η (10)

and either variable can be eliminated to produce

u · ∇∆−1u · ∇η = ∆η + u · ∇∆−1w, (11)

u · ∇∆−1u · ∇ξ = ∆ξ + w. (12)

These are the Euler-Lagrange equations for the well-
posed problems (7) and (8) so it remains only to ver-
ify that the optimal η and ξ appearing there achieve the
desired value of Nu(u)− 1.
First consider the optimal η. Testing (10) against ξ

and integrating by parts shows that ∇ξ ⊥ ∇η in L2(Ω).
Hence,

Nu(u)− 1 =
〈

|∇θ+|2
〉

=
〈

|∇ξ|2
〉

+
〈

|∇η|2
〉

and as ξ is recovered from η through (9) this verifies (7).
Next consider the optimal ξ. A similar integration by

parts argument involving (9) and (12) shows that w ⊥ η
in L2(Ω) and that

〈wξ〉 =
〈

|∇∆−1u · ∇ξ|2
〉

+
〈

|∇ξ|2
〉

. (13)
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Therefore,

Nu(u)− 1 = 〈wθ+〉 = 〈wξ〉

and combining this with (13) gives (8).
The change of variables (θ+, θ−) ↔ (η, ξ) is key to

these formulations. It was also used in the case of energy-
constrained wall-to-wall optimal transport [1] where it
was observed that η depends only on z permitting asymp-
totic solution of the Euler-Lagrange equations. Such sim-
plification does not occur in the enstrophy-constrained
case but we can still exploit (8) to deduce rigorous lower
bounds.

Nearly optimal velocity fields – Introduce a Lagrangemul-
tiplier for the enstrophy constraint and consider

M(λ) = max
u

{

Nu(u)− λ2
〈

|∇u|2
〉}

for λ≪ 1. Then (8) and straightforward rescalings imply

M(λ) − 1 = max
a

{

2a− a2 · min
〈wξ〉=1

Eλ

a

(u, ξ)

}

where

Eǫ(u, ξ) =
〈

|∇∆−1u · ∇ξ|2
〉

+ ǫ
〈

|∇u|2 + |∇ξ|2
〉

. (14)

This form of the problem, minEǫ, bears an interesting
resemblance both to Howard’s variational problem for
RBC bounds [4] and also to problems originally arising in
the study of energy-driven pattern formation in materials
science (more on this later). For now we assert that

ǫ1/2 . min
〈wξ〉=1

Eǫ(u, ξ) . ǫ1/2 log
1

ǫ

for ǫ≪ 1. The lower bound is the direct translation of the
known upper bound F (Pe) . Pe2/3 to this minimization
problem in the case of steady velocities. Our focus is on
the upper bound: next we construct test fields (uǫ, ξǫ)
satisfying the net flux constraint 〈wǫξǫ〉 = 1 such that

〈

|∇uǫ|2
〉

∼ ǫ−1/2 log
1

ǫ
and Eǫ(uǫ, ξǫ) . ǫ1/2 log

1

ǫ
(15)

for ǫ ≪ 1. After performing the construction we will
undo the rescalings to recover the main result (5).

The branching construction – A judiciously chosen
streamfunction ψ(x, z) describes a two-dimensional (2D)
divergence-free velocity field u = (−∂zψ, 0, ∂xψ) that is
well-aligned wall-to-wall and whose direction fluctuates
at a length-scale ℓ(z) depending monotonically on the
distance to the wall. Choose n points {zk}nk=1 satisfy-
ing 1

2
< z1 < z2 · · · < zn < 1 and let lk = ℓ(zk) be

the length-scale at the kth cross section with ψ(x, zk) =
ψk(x) = c0

√
2lk cos(2πl

−1
k x). (The lks will be compatible

with 2π-periodicity and the constant c0 will be chosen be-
low.) For 1 ≤ k ≤ n−1 extend the streamfunction across

FIG. 1. Schematic streamlines of the nearly optimal flow.
Streamlines branch and self-similarly refine from bulk to
boundary layer; this terminates once the design resembles
isotropic convection rolls. Inset shows structure at the wall.

the kth transition layer Ωk = Tx × [zk, zk+1] (Tx is the
periodic x-interval) by

ψ(x, z) = f

(

z − zk
zk+1 − zk

)

ψk(x)+f

(

zk+1 − z

zk+1 − zk

)

ψk+1(x)

where f ∈ C∞([0, 1]) is a cutoff function, fixed once and
for all. We require the Pythagorean condition

(f(t))2 + (f(1− t))2 = 1

and also that f(0) = 1, f(1) = 0, and f ′(0) = f ′(1) = 0.
We let ψ(x, z) = ψ1(x) in the bulk domain Ωbulk = Tx ×
[ 1
2
, z1], ψ(x, z) = f( z−zn

1−zn
)ψn(x) in the thermal boundary

layer Ωbl = Tx × [zn, 1], and extend it by even reflection
across z = 1/2 to all of Ω. See Figure 1 above.
Next we choose the test field ξ. The wall-to-wall veloc-

ity component w and ξ must be well-correlated to enforce
the net flux constraint 〈wξ〉 = 1 so we fix ξ = w. Then,
by the L2-orthonormality of {c−1

0 ψ′
k},

1

2c20
〈w2〉 =

(

∫ z1

1
2

+

n−1
∑

k=1

∫ zk+1

zk

+

∫ 1

zn

)

||c−1
0 ∂xψ||2L2

x

dz

= zn − 1

2
+ (1− zn)

∫ 1

0

f2 =
1

2
zn.

Choosing c0 = z
−1/2
n satisfies the flux constraint.

We proceed to bound the terms appearing in Eǫ in
(14). Let δk = |zk+1 − zk| be the thickness of the kth
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transition layer Ωk, let δbl = |1− zn| be the thickness of
the thermal boundary layer Ωbl, and let δbulk = |z1 − 1

2
|

be the thickness of the bulk domain Ωbulk. Recall that
lk = ℓ(zk) is the horizontal length-scale at the kth cross
section Tx × {zk}, and let lbulk = l1 and lbl = ln be
the horizontal length-scales appearing in Ωbulk and Ωbl

respectively. Similarly define zbulk = z1 and zbl = zn.
We then have the following estimates for the advection
and enstrophy terms:

〈

|∇∆−1u · ∇w|2
〉

.

∫ zbl

zbulk

(ℓ′)2dz + lbl, (16)

〈

|∇u|2
〉

∼ 1

l2bulk
+

∫ zbl

zbulk

1

ℓ2
dz +

1

lbl
. (17)

Note for these to hold we must take δbulk ∼ 1, lk . δk
and lbl ∼ δbl, and finally lk+1 ∼ lk and |lk+1 − lk| ∼ lk
for all k. Under these restrictions we conclude that

Eǫ . ǫ
1

l2bulk
+

∫ zbl

zbulk

[

(ℓ′)2 + ǫ
1

ℓ2

]

dz + lbl + ǫ
1

lbl

with a constant that only depends on those implicit in
the assumptions.
Consider minimizing the righthand side above over all

ℓ(z). The optimal ℓ satisfies ℓ′ = ǫ1/2ℓ−1 on (zbulk, zbl).
It is natural to think of solving this equation on (1

2
, 1)

with the initial condition ℓ(1) = 0 leading immediately
to the power law

ℓ(z) ∼ ǫ1/4(1− z)1/2.

Choosing ℓbulk ∼ ǫ1/4 and ℓbl ∼ ǫ1/2 we are led by (16)
and (17) to the estimates Eǫ . ǫ1/2 log 1

ǫ and
〈

|∇uǫ|2
〉

∼
ǫ−1/2 log 1

ǫ for ǫ≪ 1.

Now we prove (15). Take ℓ(z) = 2−n(1− z)1/2 and fix
the interpolation points zk = 1−2−2k so that δk = 3

4
·2−2k

and lk = 2−k−n. Given ǫ > 0, let n satisfy 1
4
log2

1
ǫ ≤

n < 1
4
log2

1
ǫ +1 and note that ǫ ∼ 2−4n. Since δbulk ∼ 1,

δk ∼ 2−2k and lk ∼ 2−k−n, and lk = 2lk+1 we see that
the requirements for (16) and (17) hold. Therefore, the
arguments above prove the validity of (15).

Rescalings and the Lagrange multiplier – We can now
deduce our main result (5). Let (uǫ, ξǫ) be as in (15). Let
ǫ = λ/a where a, λ > 0 are to be chosen, and perform
the rescalings ũ = a1/2λ−1/2uλ/a and ξ̃ = a1/2λ1/2ξλ/a.
Then, according to (15),

c1
a3/2

λ3/2
log

a

λ
≤
〈

|∇ũ|2
〉

≤ c2
a3/2

λ3/2
log

a

λ

and

Nu(ũ) ≥ 2a− ca3/2λ1/2 log
a

λ
+ λ2

〈

|∇ũ|2
〉

where c1, c2, and c are independent of all parameters.
We maximize in a. The optimal a satisfies a tran-

scendental equation so to capture the asymptotics we set

a = θ1
λ log2 λ

where θ1 depends only on c1 and c. Then for

λ≪ 1, ũ satisfies

〈

|∇ũ|2
〉

≤ 2c2
θ
3/2
1

λ3 log2 λ
and Nu(ũ) &

1

λ log2 λ
.

Finally, we can prove (5). We do so by choosing the
Lagrange multiplier to satisfy λ = θ2Pe

−2/3(logPe)−2/3

where θ2 depends only on c1, c2, and c. Then (5) follows
from the rescalings performed above.
Observe that ǫ ∼ Pe−4/3(logPe)2/3. Thus, in terms of

the original parameters, our nearly optimal velocity fields
{uPe} exhibit horizontal fluctuations at a length-scale

ℓ(z) ∼ Pe−1/3(logPe)1/6 (1 − z)1/2

for z ∈ (zbulk, zbl). In the bulk the horizontal length-scale
obeys lbulk ∼ Pe−1/3(logPe)1/6, while in the thermal
boundary layer lbl ∼ Pe−2/3(logPe)1/3.

Discussion – The ultimate result of this Letter is
that there exist incompressible flows satisfying suitable
boundary conditions and intensity constraints that trans-
port heat by (1) and saturate, modulo logarithmic cor-
rections, the upper bound Nu . Ra1/2 that holds for any
RBC flow. It does not, however, establish the existence
of solutions to the full Boussinesq system (1) and (4)
that realize such transport. The actual behavior of large
Rayleigh number RBC transport remains an open ques-
tion mathematically. We note here, however, the recent
result obtained in [13] for RBC transport between stress-
free boundaries in 2D that states that Nu . Ra5/12 uni-
formly in Pr. Combining this bound with the results of
this Letter, and the fact that the optimal transport be-
tween stress-free boundaries is no smaller than between
no-slip boundaries [2], we conclude that buoyancy forces
cannot achieve—or even approach—the actual optimal
wall-to-wall transport in 2D stress-free RBC .
Mathematical analysis of upper bounds on the rate

of heat transport in RBC goes back at least to Howard
[4] who, employing suitable mean/moment balance laws,
introduced the variational problem

m(λ) = min
〈wξ〉=1

〈

|wξ − 1|2
〉

+ λ
〈

|∇u|2
〉

·
〈

|∇ξ|2
〉

(18)

where f stands for the average in the periodic variables
x and y. Here we introduce the related problem

m̃(ǫ) = min
〈wξ〉=1

〈

|wξ − 1|2
〉

+ ǫ
〈

|∇u|2 + |∇ξ|2
〉

(19)

and note that m(λ) ∼ λ1/3 for λ≪ 1, while m̃(ǫ) ∼ ǫ1/2

for ǫ ≪ 1. The former was obtained by Howard and
Busse in their groundbreaking works [4, 5]. The lower
bounds implicit in both of these scalings are equivalent
to the upper bound Nu . Ra1/2.
Our interest in (18) and (19) is in their relation to

wall-to-wall optimal transport. We showed above that
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the steady wall-to-wall problem is equivalent to the min-
imization of Eǫ(u, ξ) under a net flux constraint 〈wξ〉 = 1
(see equation (14) and the surrounding discussion). Now
we decompose the advection term in Eǫ as

〈

|∇∆−1divuξ|2
〉

=
〈

|wξ − 1|2
〉

+Q(uξ)

where Q is the positive semi-definite quadratic form

Q(m) = min
w:divw=0

〈

|w +m−m · k̂ k̂|2
〉

.

Evidently this new term Q, not present in (18) and (19),
arises from the advection-diffusion constraint (1).
As shown in this Letter, the wall-to-wall optimal trans-

port approach cannot result in a significantly improved
upper bound on heat transport in turbulent RBC, i.e.,
improvement cannot come in the form Nu . Raα with
α < 1

2
. Still, the quadratic form Q does play a non-trivial

role in our construction of nearly optimal flows: it is pre-
cisely this form that supplies the term

∫ zbl
zbulk

(ℓ′)2dz in the

advection estimate (16). So, at the level of constructions,
Q is what gives rise to the logarithmic correction in (5).
It remains to be seen if it actually modifies the behavior
of the optimal transport function F (Pe).
The branching flow structure described in this Letter is

similar to Busse’s “multi α” technique [5] for the analysis
of Howard’s problem. Busse observed that (18) cannot
be solved as λ → 0 by flows featuring only one horizon-
tal mode. Instead, increasingly more horizontal modes
emerge as λ → 0 with wavenumbers {αk}nk=1 depending
on the distance to the wall. The resulting picture is sim-
ilar to that presented here albeit with significantly dif-
ferent vertical and horizontal length-scales {δk}nk=1 and
{lk}nk=1.
But Busse’s work was not how we came upon the

idea for this sort of flow in wall-to-wall optimal trans-
port. Instead we observed that the functional Eǫ in
(14) shares striking similarities with various function-
als arising in the study of energy-driven pattern forma-
tion in materials science [9] where emergent multiple-
scale structures are commonly referred to as “branch-
ing”. Three examples come to mind: domain branching
in uniaxial ferromagnetics [14, 15], branching of twins
near an austenite–twinned-martensite interface [16, 17],
and self-similar blistering patterns in a biaxially com-
pressed thin elastic film [18–20]. The morphology of low
energy states in these examples results from the compe-
tition between a non-convex lowest order term (e.g., in
micromagnetics, the anisotropy and magnetostatic ener-
gies) and a higher order convex regularization (e.g., the
exchange energy). Branching efficiently matches bound-

ary conditions to low-energy states in the bulk. Contin-
uing with the analogy of micromagnetics, Privorotskĭı’s
construction is to our branching flow construction what
the Landau-Lifshitz structure is to single mode convec-
tion rolls. Regarding elastic blistering, we see a parallel
between the advection term in (14) and the membrane
energy in the Föppl-von Kármán model; likewise the en-
strophy term from (14) is to be compared with the bend-
ing energy there. Such analogies are useful routes for the
transfer of mathematical methods and theoretical tech-
niques, and we imagine that other such connections are
waiting to be found.
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