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We show that charged toroidal droplets can develop finger-like structures as they expand due to Saffman-

Taylor instabilities. While these are commonly observed in quasi-two dimensional geometries when a fluid

displaces another fluid of higher viscosity, we show that the toroidal confinement breaks the symmetry of the

problem, effectively making it quasi-two dimensional and enabling the instability to develop in this three di-

mensional situation. We control the expansion speed of the torus with the imposed electric stress and show

that fingers are observed provided the characteristic time scale associated to this instability is smaller than the

characteristic time scale associated to Rayleigh-Plateau break-up. We confirm our interpretation of the results

by showing that the number of fingers is consistent with expectations from linear stability analysis in radial

Hele-Shaw cells.

Droplets are spherical since the sphere minimizes the area

for a given volume [1]. In the presence of charge, however,

the balance between surface tension and electric stresses re-

sults in an ellipsoidal shape [2]. With even more charge, the

elongated droplet eventually becomes unstable and develops

conical points at the ends that evolve into charged jets, which

ultimately break into small drops [2]. For a charged toroidal

droplet the situation is markedly different. In this case, the

surface charge density is not constant throughout the surface;

it is smallest in the inside of the torus, where the polar an-

gle θ [see Fig. 1(a)], is zero, and it is largest in the outside

of the torus, where θ = π. This breaks the axisymmetry of

the cylinder and causes the toroidal droplet to expand with

velocity ~Uo [see Fig. 1(a)], before break-up occurs due to

Rayleigh-Plateau instabilities [3]. Note, however, that due to

the symmetry breaking in the problem, the expansion becomes

an essentially two-dimensional problem.

In this Letter, we show that charged toroidal droplets can

evolve via the Saffman-Taylor instability [4], which occurs

when a fluid displaces another fluid of higher viscosity in a

confined quasi-two dimensional flow [5]. Typically, the dis-

placement of the high-viscosity fluid is driven by continuous

pumping of the low-viscosity fluid in a Hele-Shaw cell, which

consists of two parallel plates a small distance away from

each other [4]. The interface between the two fluids moves

at a certain speed before destabilizing and resulting in the for-

mation of fingers. In our experiments, the expansion speed,

which results from the particular surface charge distribution

on the torus, is controlled by the applied voltage. By varying

this speed, we demonstrate that the Saffman-Taylor instability

competes with Rayleigh-Plateau break-up, and that the faster

of the two determines the fate of the toroidal droplet. We fur-

ther confirm that our observations are indeed due to viscous

fingering by showing that the number of fingers determined

experimentally is consistent with what is expected from linear

stability analysis in radial Hele-Shaw cells.

We generate charged toroidal droplets by injecting a low-

viscosity liquid inside a high-viscosity liquid that is contained

inside a glass cuvette, which is placed on top of a metallic

rotating stage [3]. The injection is through a metallic nee-

dle offset from the center of rotation of the cuvette [6], as

schematically shown in Fig. 1(b). As a result of the imposed

rotation, a curved jet forms, eventually closing onto itself and

resulting in the generation of a toroidal droplet. The typical

liquid pumped is within 20 and 40 µL. Note that by control-

ling the distance between the needle and the rotation axis, as

well as the total volume we pump, we can independently vary

the tube radius, a0, and the radius of the central circle radius,

R0 [Fig. 1(a)]. We then apply a voltage difference across the

metallic needle and the rotating stage [Fig. 1(b)], and monitor

the evolution of the toroidal droplet by imaging from below

using a CCD camera. We emphasize that the experiments are

performed with the metallic needle inside the torus. There-

fore, the torus is always equipotential and the experiments are

performed at constant voltage, V . The low-viscosity liquid is

water containing 16 mM of sodium dodecyl sulfate (SDS); its

dynamic viscosity is µ1 = 1 mPa · s. The high-viscosity liq-

uid is a mixture of a 65 cSt aminopropyl terminated silicone

(ATSO) at a concentration of 2% w/w, and a 60, 000 cSt sili-

cone oil; its dynamic viscosity is µ2 = 53 ± 1 Pa · s. Hence,

in our experiments µ1 << µ2. In addition, the SDS in con-

junction with the ATSO in the outer liquid result in a low in-
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FIG. 1. (a) Schematic of the circular cross section of a torus. R0 is

the radius of the central circle, a0 is the tube radius, and θ is the polar

angle. The torus is obtained by revolving this cross section along

the φ̂ direction. The velocity at θ = π is ~Uo. (b) Schematic of the

experimental setup. A bath containing silicone oil rotates with an

angular speed ω ≈ 0.25 rad/s while the inner liquid is injected. The

resultant toroidal droplet is charged at a voltage V ∈ [0,1800] V. The

subsequent evolution of the torus is captured using a CCD camera.
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FIG. 2. Snapshots of the evolution of (a-c) a breaking torus with

R0/a0 = 3.5 and V = 500 V, (d-f) a torus with R0/a0 = 3.7 and

V = 800 V where both break-up and viscous fingering are at play, and

(g-i) a torus with R0/a0 = 3.2 and V = 1500 V that clearly exhibits

visous fingering. The dashed circle in (a) represents the outer rim of

the torus at t=0. The snapshots (j-l) illustrate that some of the initial

perturbations do not develop into fingers. The torus has R0/a0 = 2.0
and the applied voltage is V = 800 V. In (k) and (l), we identify with

numbers the initial perturbations and the number of fingers at a late

stage of development. Scale bars: 2mm.

terfacial tension, which significantly slows down the break-up

dynamics; we measure a value of γ = (3.0 ± 0.5) · 10−4 N/m

using the pendant drop method [7].

For low enough voltage the torus either shrinks and coa-

lesces onto itself to become a single spherical droplet [6, 8–

10], or expands before breaking due to Rayleigh-Plateau insta-

bililities [3]; an example of the latter is shown in Fig. 2(a-c)

for a torus with an aspect ratio ξ = R0/a0 ≈ 3.5 and at V = 500

V. For a similar torus at V = 800 V, we observe that the in-

terface slightly distorts, eventually resulting in the formation

of fingers; this evolution is exemplified in Fig. 2(d-f). At an

even higher voltage of V = 1500 V, the interface clearly devel-

ops initial perturbations in the outer part of the torus, which

evolve into a large number of fingers, as shown in Fig. 2(g-i).

We note that it is not uncommon to observe that some of the

initial perturbations do not grow at later stages. This is ob-

served at places that can be far or close to the needle, and that

are different for different tori. Hence, despite the fact that the

needle could have some local effects in the evolution of the

torus, we believe the disappearance of fingers is most likely

due to volume conservation. In contrast to experiments with

Hele-Shaw cells, where the inner liquid is constantly pumped,

our tori contain a fixed volume. As a result, when some of the

fingers grow, they consume the available liquid, undermining

the growth of nearby fingers; an example of this is shown in

Fig. 2(j-l). We also note that individual fingers can divide into

two fingers, consistent with what is observed in radial Hele-

Shaw cell experiments [11] and as highlighted using a dashed

circle in Fig. 2(i); this is also observed at places that could

be close or far from the needle, suggesting once again, that

even if the needle can induce local perturbations, it does not

affect the overall evolution of the torus. We note, however,

that finger division is not frequently observed; we believe this

is again due to volume conservation. Note that the shadow

seen in all images in Fig. 2 is due to the alligator clip used to

maintain the metallic needle in place.

We find that the torus expands faster the higher the applied

voltage; this can be seen by visually inspecting Figs. 2(b,e,h)

and suggests that the speed of expansion affects the appear-

ance of fingers. To determine what sets the expansion speed,

we consider the normal stress balance at the interface, which

is given by: p(θ) − po = 2γH − 1
2
ǫE2, where p(θ) − po is

the pressure jump at the interface, with p(θ) and po the pres-

sures inside the torus at a polar angle θ and outside the torus,

respectively, H is the mean curvature, ǫ is the dielectric con-

stant of the outer medium and E is the electric field at the

interface. Here, we assume that the torus is a perfect con-

ductor with zero electric field inside and a field perpendicu-

lar to the interface on the outside; this is justified given the

low electrical relaxation time (≈ 7.1 ns) compared to the typ-

ical time scale associated to the toroidal drop evolution. For

a torus, H = 1
2ao

ξ−2cos θ
ξ−cos θ

[8], and we use ǫ = (3.7 ± 0.5)ǫo,

with ǫo the vacuum permittivity [3]. The field E is calculated

analytically [12]. Using this information, we can estimate the

pressure difference ∆p = p(θ = 0)− p(θ = π) along the expan-

sion direction. Interestingly, ∆p determines Uo. We arrive at

this result by estimating the viscous stress exerted on a torus

from the drag force exerted on a finite cylinder with an aspect

ratio ξc moving at a speed Uo and oriented perpendicular to

the flow direction, and inside a liquid with viscosity µ2 [13]:

τµ =
2πµ2Uo

a ln(0.83ξc)
, where a is the radius of the circular cross sec-

tion of the cylinder. In our case, we take ξc = ξ and a = a0,

and obtain that τµ is linear with ∆p, as shown in Fig. 3, con-

firming that the expansion speed, for a torus with a given ge-

ometry inside a given outer liquid, can be controlled with ∆p,

and thus with V .

The applied voltage then affects Uo and thus the time scale

associated to the observation of viscous fingering. If break-

up happens before this instability can develop, however, no

fingers are observed. To confirm this, we consider the relevant

time scales in either case. For break-up, which is essentially

due to Rayleigh-Plateau instabilities, we take tR−P =
2µ2ao

γ
,

where the prefactor 2 is obtained for the case of µ1/µ2 <<
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FIG. 3. Viscous stress, τµ, as a function of the pressure difference

∆p = p(θ = 0) − p(θ = π). (�) Expanding tori that break, (�) tori

that evolve via viscous fingering instabilities, and (H) tori that exhibit

both breaking and viscous fingering. The error bars are calculated by

propagating the errors in a0, ξ, and Uo, which mostly result from the

pixel size of our CCD camera. The line corresponds to a linear fit of

the data going through the origin: τµ = m ∆p, with m = 0.49 ± 0.10.
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FIG. 4. State diagram in terms of the capillary number Ca and the

aspect ratio Ro/ao. The symbols represent (�) shrinking tori, (�) tori

with stationary central-circle radius, (N) expanding tori that break,

(�) tori evolving via viscous fingering, and (H) tori that exhibit both

breaking and viscous fingering. The dashed line represents the criti-

cal capillary number where only viscous fingering is observed.

1 [15, 16]. For the Saffman-Taylor instability, the relevant

time scale is tS−T =
ao

Uo
[17], corresponding to the time for

the interface of the torus to move its tube radius. Hence, we

expect the transition from break-up to viscous fingering will

occur when:

tS−T < tR−P ⇒ Ca =
µ2Uo

γ
> 0.5 (1)

where Ca is a capillary number. Experimentally, we observe

the clear development of fingers for Ca & 0.4, as shown in Fig.

4 with a dashed line and consistent with our expectations.

To further support that the instability we observe is related

to viscous fingering, we consider the fastest growing mode

obtained in a linear stability analysis of the radial Hele-Shaw

cell [17]. The basic equation that describes the velocity in this

problem is Darcy’s law:

~u = −
b2

12µ
∇p, (2)

where b is the plate-plate separation, µ is the viscosity of the

liquid and p is the pressure. The base solution of the problem

is obtained by solving equation 2 for the velocities of both in-

ner and outer liquids, uinner and uouter, respectively, for an un-

perturbed interface. The boundary conditions at the interface

are: uinner = uouter and pinner− pouter = 2γH, which correspond

to the kinematic boundary condition and the normal stress bal-

ance, respectively. The base solution is then sinusoidally per-

turbed using a number n of wavelengths, as illustrated in the

inset in Fig. 5 for n = 6; the value of n determines the number

of fingers that develop and corresponds to the different modes

in the problem. By solving for the perturbed velocity using

equation 2, subjected to the same boundary conditions, the

growth rate for each n can be calculated [17]. We consider the

mode that grows the fastest, as this is the n most likely seen

experimentally; it is given by [17, 18]:

nm =

(

1

3

(

12µ2

γ

UR2

b2
+ 1

))
1
2

(3)

where U is the velocity of the interface, and R the radius of the

stable circle before any fingers develop. To compare with our

experimental results, we consider U = Uo, R = R0+a0 and b =

2a0. Since the theory is a linear stability analysis, the validity

of the result is restricted to the early stages of the instability,

where the perturbations are still small. We therefore measure

nm right after the perturbations in the outer part of the torus

become apparent [see Fig. 2(k)], and plot nm as a function of

Uo [(ξ + 1)/2]2, where we recall that ξ = R0/a0. We find that

the number of fingers grows as Uo [(ξ + 1)/2]2 increases, as

shown in Fig. 5 and consistent with what is expected from

equation 3. By performing a non-linear least squares fit of

the data to equation nm =

√

1
3

(

A Uo [(ξ + 1)/2]2 + B
)

, where

A and B are fitting parameters, we obtain A = (6.2 ± 0.2) ·

106 s/m and B = 190 ± 70. The fit correctly describes the

data, as shown with a continuous line in Fig. 5, indicating

that our results conform to the functional form prescribed by

equation 3. Furthermore, from the values of µ2 and γ in our

experiments, we find A =
12µ2

γ
= (2.1 ± 0.3) · 106 s/m, which

is comparable to the value of A obtained from the fit. Note,

however, that the error in B is large, reflecting our inability

to conclude anything meaningful from the behavior of nm for

low Uo [(ξ+ 1)/2]2. Indeed, enforcing B = 1 and leaving A as

the only fitting parameter, still qualitatively describes the data,

as shown with a dashed line in Fig. 5, with A = (8.3±0.6) ·106

s/m, which is not far from our previous result.

Thus, our data conforms to the functional form prescribed

by equation 3 despite the different geometry in our problem

and the fact that we did not explicitly account for the presence

of charge on the toroidal surface. This suggests that the key to

our results is the quasi-two dimensional flow that results from
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FIG. 5. Number of perturbations, nm, in the early stages of evolution

[see Fig. 2(k)], as a function of Uo [(ξ + 1)/2]2. The continuous and

dashed lines are fits to the data (see text). Inset: Top-view schematic

of the unperturbed circular interface with radius R (continuous line)

and a sinusoidally perturbed interface for n = 6 (dashed line).

the uneven charge density distribution on the torus, further

supporting the idea that the main role of the charge is to set

the value of Uo, which is ultimately the quantity that enters in

the theoretical treatment of the radial Hele-Shaw cell. How-

ever, explicitly performing the linear stability analysis of the

full problem, considering both the presence of surface charge

and the toroidal geometry of our experiments, would provide

a more accurate analysis of the experimental situation. Our

analysis, nevertheless, captures the essential aspects of our ob-

servations.

We have shown that the geometry of a charged toroidal

droplet can result in a steady quasi-two dimensional expan-

sion that precedes the formation of viscous fingering. This

illustrates that it is possible for Saffman-Taylor instabilities,

which most commonly occur in confined flows when a fluid

displaces another more viscous fluid, can develop in a three-

dimensional setting; this had been numerically and theoreti-

cally proposed before in a different context [19]. In our experi-

ments, it is the uneven surface charge distribution between the

inside and outside regions of the torus that ultimately enables

the formation of fingers. This instability is in direct competi-

tion with the Rayleigh-Plateau instability, which would cause

the torus to break. As a result, the instability that grows fastest

is the one that determines the fate of the toroidal drop. By con-

trolling the expansion speed with the applied voltage, we are

able to decrease the time scale associated to viscous fingering

so that it is this instability that controls the evolution of the

torus. The number of fingers in the experiments qualitatively

follows the expected number of fingers obtained from linear

stability analysis in radial Hele-Shaw cells, supporting that

our observations are related to Saffman-Taylor instabilities.

However, more detailed theoretical calculations are needed to

fully obtain a detailed picture of the problem. Most impor-

tantly, the breaking of axisymmetry in a torus is key to our

observations, suggesting that similar behavior is also possible

in situations where due to the three-dimensional character of

the flows, viscous fingering would not be anticipated. This

could potentially extend the relevance of this instability to sit-

uations other than two phase flows in porous media, which is

perhaps where it is of most importance.
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