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We present a technique to measure the amplitude of a center-of-mass (COM) motion of a two-
dimensional ion crystal of ∼100 ions. By sensing motion at frequencies far from the COM resonance
frequency, we experimentally determine the technique’s measurement imprecision. We resolve am-
plitudes as small as 50 pm, 40 times smaller than the COM mode zero-point fluctuations. The
technique employs a spin-dependent, optical-dipole force to couple the mechanical oscillation to the
electron spins of the trapped ions, enabling a measurement of one quadrature of the COM motion
through a readout of the spin state. We demonstrate sensitivity limits set by spin projection noise
and spin decoherence due to off-resonant light scattering. When performed on resonance with the
COM mode frequency, the technique demonstrated here can enable the detection of extremely weak
forces (< 1 yN) and electric fields (< 1 nV/m), providing an opportunity to probe quantum sensing
limits and search for physics beyond the standard model.

Measuring the amplitude of mechanical oscillators has
engaged physicists for more than 50 years [1, 2] and, as
the limits of amplitude sensing have dramatically im-
proved, produced exciting advances both in fundamen-
tal physics and in applied work. Examples include the
detection of gravitational waves [3], the coherent quan-
tum control of mesoscopic objects [4], improved force mi-
croscopy [5], and the transduction of quantum signals [6].
During the past decade, optomechanical systems have fa-
cilitated increasingly sensitive techniques for reading out
the amplitude of a mechanical oscillator [7–11], with a
recent demonstration obtaining a measurement impreci-
sion more than two orders of magnitude below zZPT ,
the amplitude of the ground-state zero-point fluctua-
tions [12]. Optomechanical systems have assumed a wide
range of physical systems, including toroidal resonators,
nanobeams, and membranes, but the basic principle in-
volves coupling the amplitude of a mechanical oscillator
to the resonant frequency of an optical cavity mode [4].

Crystals of laser-cooled, trapped ions behave as
atomic-scale mechanical oscillators [13–15] with tun-
able oscillator modes and high quality factors (∼106).
Furthermore, laser cooling enables ground-state cooling
and non-thermal state generation of these oscillators.
Trapped-ion crystals therefore provide an ideal experi-
mental platform for investigating the fundamental limits
of amplitude sensing. Prior work has demonstrated the
detection of amplitudes larger than the zero-point fluctu-
ations of the trapped ion oscillator [14–16], and reported
impressive force sensing by injection locking an optically
amplified oscillation of a single trapped ion [17].

In this Letter we experimentally and theoretically an-
alyze a technique to measure the center-of-mass (COM)
motion of a two-dimensional, trapped-ion crystal of ∼100
ions with a sensitivity below zZPT . We employ a time-

varying spin-dependent force F0 cos (µt) that couples the
amplitude of the COM motion with the internal spin
degree of freedom of the ions [18–20]. When the fre-
quency µ matches the frequency ω of a driven COM os-
cillation, Zc cos (ωt), spin precession proportional to Zc
occurs. The amplitude-dependent spin precession is anal-
ogous to the optomechanical frequency shift of a cavity
mode. In contrast to the continuous measurement typ-
ical of optomechanics experiments, we measure the spin
precession only at the end of the experimental sequence,
with a precision imposed by spin projection noise [21].

To determine the read-out imprecision in a regime free
from thermal noise, we perform measurements where ω
is far from resonance with the trap axial frequency ωz.
Additionally, we implement a protocol where the phase
of the measured quadrature randomly varies from one
iteration of the experiment to the next, appropriate for
sensing a force whose phase is unknown or not stable. For

N = 85 ions and zZPT ≡ 1√
N

√
h̄

2mωz
≈ 2 nm, we detect

amplitudes Zc = 500 pm in a single implementation of
the experimental sequence, and as small as 50 pm after
averaging over 3,000 iterations of the sequence.

Our experimental apparatus, described in Fig. 1 and
[18, 19, 22], consists of N ∼ 100 9Be+ ions laser-cooled
to the Doppler limit of 0.5 mK and confined to a single-
plane Coulomb crystal in a Penning trap. The spin-1/2
degree of freedom is the 2S1/2 ground-state valence elec-
tron spin |↑〉 (|↓〉) ≡ |ms = +1/2〉 (|ms = −1/2〉). In the
magnetic field of the Penning trap, the spin-flip frequency
is 124 GHz. A resonant microwave source is used to per-
form global rotations of the spin ensemble. A pair of
laser beams, detuned from the nearest optical transitions
by ∼20 GHz, interfere to form a one-dimensional (1D)
traveling-wave potential that produces a spin-dependent
optical-dipole force (ODF). Optical pumping prepares
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FIG. 1. (a) Representation of ion spins arranged in a 2D
triangular lattice, along with a cross-sectional illustration of
the Penning trap, characterized by an axial magnetic field
B = 4.45 T and an axial trap frequency ωz = 2π× 1.57 MHz.
The blue dots represent ions. Cylindrical electrodes (yellow)
generate a harmonic confining potential along the ẑ-axis. Ra-
dial confinement is provided by the Lorentz force from ~E× ~B-
induced rotation in the axial magnetic field. The beams gen-
erating the spin-dependent optical-dipole force (green arrows)
cross the ion plane at ±10◦, forming a 1D traveling-wave po-
tential (green lines) with δk = 2π/(0.9µm). An AC voltage
source is connected to the trap endcap and used to drive an
axial oscillation with calibrated amplitude Zc. (b) Quantum
lock-in CPMG sequence used to detect spin precession pro-
duced by COM motion resonant with the ODF. Doppler cool-
ing and |↑〉N spin-state preparation occur before the sequence,
and spin-state detection after. Grey blocks with solid borders
represent microwave π/2 rotations about ŷ and π rotations
about x̂. Orange blocks with dashed borders represent ODF
pulses. The ODF phase is advanced by ∆ϕ in a modulation
scheme discussed in [23], where ∆ϕ = π for ω = µ. Dashed
vertical lines indicate the m segments of the sequence, here
m = 2. We make use of an m = 8 sequence for Figs. 2-4.

the initial state |↑〉N ≡ |↑↑ · · · ↑〉 with high fidelity. At
the end of the experiment we measure the probability P↑
for an ion spin to be in |↑〉 from a global measurement
of state-dependent resonance fluorescence on the Doppler
cooling transition, where spin |↑〉 (|↓〉) is bright (dark).

If the ions are localized axially over an extent small
compared with the wavelength of the 1D traveling-wave
potential (Lamb-Dicke confinement), then the ODF cou-
ples the spin and motional degrees of freedom through
the interaction [22]

ĤODF = F0 cos (µt)
∑
i

ẑiσ̂
z
i . (1)

Here F0 = U δkDWF is the magnitude of the ODF,
where U (δk) is the zero-to-peak potential (wave vector)
of the 1D traveling-wave, µ is the frequency difference be-
tween the ODF beams, and ẑi and σ̂zi are the position op-
erator and Pauli spin matrix for ion i. The Debye-Waller

factor DWF = exp(−δk2
〈
ẑ2
i

〉
/2) reduces F0 due to the

departure from the Lamb-Dicke confinement regime [24];
DWF ≈ 0.86 for the conditions of this work. The poten-
tial U , and therefore F0, is determined from AC Stark
shift measurements on the ions [25]. Typical maximum
values for this work are U/h̄ ' 2π× (10.4 kHz) resulting
in F0 ' 40 yN.

Equation (1) describes a dependence of the spin tran-
sition frequency on the axial position of the ions and the
ODF frequency µ. We excite a small, classically driven
COM motion of constant amplitude ẑi → ẑi+Zc cos(ωt+
δ) with a weak RF drive on a trap endcap electrode (see
Fig. 1(a)) at a frequency ω far from ωz. If ω ∼ µ, Eq.
(1) produces an approximately constant shift in the spin
transition frequency. With δkZc � 1, this shift is given
by

ĤODF ≈ F0 Zc cos((ω − µ)t+ δ)
∑
i

σ̂zi
2
. (2)

For µ = ω, the static shift of the spin transition frequency
is simply ∆(Zc) = (F0/h̄)Zc cos(δ).

We measure ∆(Zc) from the resulting spin precession
in an experiment like that shown in Fig. 1(b). Ideally,
spin precession can be measured using a Ramsey-type
experiment. First, the ions are prepared in the |↑〉N
state, followed by a microwave π/2 pulse about ŷ that
rotates the spins to the x̂ axis. The spins precess for
an interaction time τ so that the resulting spin preces-
sion on resonance (µ = ω) is θ = θmax cos(δ), where
θmax ≡ (F0/h̄)Zc τ . After a final π/2 pulse about ŷ, the
final state readout measures the population of the spins
in |↑〉, P↑ = 1

2 [1− e−Γτ cos(θ)]. Here Γ is the decay rate
from spontaneous emission from the off-resonant ODF
laser beams [26]. To detect small amplitudes with the
available F0 in our set-up, we extend the spin-precession
time to τ ≥ 20 ms. To avoid decoherence due to mag-
netic field fluctuations and coherently accumulate spin
precession, we use a quantum lock-in [27] sequence where
during the interaction time τ the spin precession is in-
terrupted by a train of π-pulses that are synchronized
with phase jumps enforced on the ODF beams [23]. In
particular, we use a Carr-Purcell-Meiboom-Gill (CPMG)
sequence with m = 8 ODF-π-ODF segments (τ = 2mT ,
see Fig. 1(b)).

We allow the phase δ to randomly vary from one it-
eration of the CPMG sequence to the next, effectively
measuring a random quadrature of the motion for each
experimental trial. Different experimental trials there-
fore result in a different precession θ, as indicated in
Fig. 3. We measure the collective dephasing (or deco-
herence) averaged over many experimental trials 〈P↑〉 =
1
2 [1− e−Γτ 〈cos(θ)〉]. Here the brackets 〈·〉 denote an av-
erage over many iterations of the CPMG sequence. Av-
eraging over the random phase δ yields [28]

〈P↑〉 =
1

2

[
1− e−ΓτJ0(θmax)

]
, (3)
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FIG. 2. Lineshape of the spin precession signal for amplitudes
Zc of 500 pm (red diamonds), 1 nm (blue triangles), 2 nm
(green squares), and 5 nm (orange circles) for τ = 20 ms.
Black triangles are the background, with the drive turned off.
Dashed lines are predictions with no free parameters. Error
bars represent standard error. Here N = 90 ions and F0 = 7.9
yN.

with J0 the zeroth-order Bessel function of the first kind.

To create the steady-state COM axial oscillation
Zc cos(ωt + δ), we applied a continuous AC voltage to
an endcap of the Penning trap at a frequency ω/(2π)
near 400 kHz. This frequency was chosen because it was
far from any motional mode frequencies of the ion crys-
tal, and there were no observed noise sources. Thus, the
background, i.e. the signal without the driven COM ax-
ial motion such that Zc = 0, was fully characterized by
decoherence due to spontaneous emission and is given by
〈P↑〉bck = 1

2

[
1− e−Γτ

]
. We calibrated the displacement

of the ions due to a static voltage applied to the endcap
by measuring the resulting movement of the ion crystal
in the side-view imaging system. From this calibration,
we determined that a 1 V offset results in a 0.97(5) µm
displacement of the ions. We estimate that the correc-
tions for using this DC calibration to estimate Zc for an
ω/(2π) ≈ 400 kHz drive is less than 10 %.

Figure 2 shows the emergence of the measured spin pre-
cession signal out of the background as the amplitude Zc
is increased from 500 pm to 5 nm. The measured line-
shape agrees well with the prediction, detailed in [23],
involving no free parameters. Figure 3 shows the back-
ground and the measured resonant (µ = ω) response to
a Zc = 485 pm oscillation for a range of ODF strengths
F0/F0M , where F0M is the maximum F0 possible with
our current set-up (∼ 40 yN). Agreement with Eq. (3)
involving no free parameters is excellent. For both Figs.
2 and 3 the background is within 6 % of that determined
by independent measurements of the spontaneous emis-
sion decay rates of each ODF beam [25]. The amplitude
Zc = θmax/(τF0/h̄) can be determined from the differ-
ence 〈P↑〉− 〈P↑〉bck [23]. We note that 〈P↑〉− 〈P↑〉bck de-

FIG. 3. Top: Bloch sphere representation [29] of spin de-
phasing for Zc = 485 pm. Each blue vector represents an
experimental trial with a different phase δ (see text). From
left to right, the spread in the blue vectors corresponds to
θmax = 0.470, 1.41, 3.62 radians and F0/F0M = 0.1, 0.3, 0.77,
where F0M is the maximum optical-dipole force. Our exper-
iment measures the length of the Bloch vector averaged over
many trials, denoted by the thick red vector. Main plot:
As a function of ODF strength, the background (black dia-
monds) with no applied drive and signal (blue points) for a
485 pm amplitude and total ODF interaction time τ = 24 ms
is shown. The red dashed line is a fit to the background. The
black dashed line is the prediction with no free parameters,
given the background fit. Here N = 75 ions and F0M = 41.3
yN. Inset: Black points are experimentally determined val-
ues for Z2

c . Red dashed line is the calibrated value of Z2
c .

Error bars represent standard error.

pends on θ2
max. Therefore, the sensing protocol described

here directly measures Z2
c . The inset of Fig. 3 shows a

determination of Z2
c for a range of ODF strengths. The

uncertainties were calculated from the measured noise
of the 〈P↑〉 − 〈P↑〉bck measurements using standard error
propagation. These uncertainties go through a minimum,
indicating an optimum F0/F0M value for determining Z2

c .

To explore the ultimate amplitude sensing limits of
our protocol, we performed repeated pairs of P↑ mea-
surements, first with Zc = 0 to get the background,
and then with Zc 6= 0. For a given Zc, 3,000 pairs
of measurements were used to determine the average
difference 〈P↑〉 − 〈P↑〉bck and the standard deviation
σ (P↑ − P↑,bck) of the difference for a single pair of mea-
surements. For each Zc, F0/F0M was set close to the
value that maximizes the signal-to-noise ratio for de-
termining Z2

c . This occurs for relatively small θmax
such that 1

2 (1− J0 (θmax)) ≈ θ2
max/8. Then, the signal-
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FIG. 4. Amplitude sensing limits for N = 85. Black points
are the experimentally measured signal-to-noise for determi-
nations of Z2

c from single pairs of P↑, P↑,bck measurements as
a function of the experimentally imposed Zc. Our measure-
ment for Zc = 25 pm is consistent with zero. Red dashed line
is the prediction for the signal-to-noise including projection
noise and the random COM mode quadrature measured each
trial. Blue solid line is the predicted limiting signal-to-noise
for small amplitudes (Eq. (5)), assuming only projection noise
and parameters relevant for our set-up. Error bars represent
standard error.

to-noise ratio for determining Z2
c from a single pair of

P↑, P↑,bck measurements is approximately

Z2
c

δZ2
c

≈
〈P↑〉 − 〈P↑〉bck
σ (P↑ − P↑,bck)

. (4)

Figure 4 displays Eq. (4) from measurements acquired
with Zc ranging from 10 nm to as small as 0.025 nm.
Excellent agreement is observed with a model (dashed red
line) that assumes the only noise sources are projection
noise in the spin-state detection and fluctuations in P↑
produced by random variation in the phase δ from one
experimental trial to the next.

For amplitudes Zc >∼ 500 pm, fluctuations in P↑ due to
the random variation of the phase δ for different exper-
imental trials dominates. This situation is depicted by
the middle Bloch sphere of Fig. 3. Here the fluctuations
in P↑ are comparable to the difference 〈P↑〉 − 〈P↑〉bck,
limiting the signal-to-noise of a single determination of
Z2
c to ∼1. As Zc decreases, this noise and the signal

decrease while projection noise stays approximately the
same, resulting in a decreasing Z2

c /δZ
2
c . For small Zc, we

show the sensitivity is determined by N , δk, and the ra-
tio of the spontaneous decay rate to the optical potential
ξ ≡ Γ/ (U/h̄) [23], according to

Z2
c

δZ2
c

∣∣∣∣
limiting

≈ 0.097

√
N(DWF )2(δk)2

ξ2
Z2
c . (5)

For N = 85 and values of DWF , δk, and ξ = 1.156×10−3

relevant for our set-up, Eq. (5) predicts Z2
c /δZ

2
c ≈

[Zc/0.2 nm]
2
, displayed as the blue line in Fig. 4. On

the log-log plot the slope of 2 is the result of a sig-
nal proportional to Z2

c along with a constant readout

noise of the spins (here projection noise). We perform
16 pairs of measurements in 1 s, so the signal-to-noise
Z2
c /δZ

2
c ≈ [Zc/0.2 nm]

2
for a single pair of measure-

ments corresponds to a long averaging time sensitivity of
(100 pm)

2
/
√

Hz (recall that our protocol measures Z2
c ).

Figure 4 documents a good understanding of the sens-
ing limits of our protocol, indicating how the measure-
ment can be improved in the future. Equation (5) scales
as 1/ξ2, resulting in significant improvements for set-ups
with less spontaneous decay. By stabilizing the ODF
beatnote phase with respect to the classical drive [30, 31]
we could repeatedly measure the same quadrature of mo-
tion and realize a substantial improvement in sensitivity.
For this phase-coherent protocol, assuming N = 100 and
current parameters of our set-up, we estimate [23] a mea-
surement imprecision of 74 pm for a single implementa-
tion of the experimental sequence. This is ∼ 30 times
smaller than zZPT , producing a long averaging time sen-
sitivity of ∼18pm/

√
Hz. The use of spin-squeezed states,

recently demonstrated in this system [22], can provide an
additional enhancement by reducing the projection noise
of the readout.

The 50 pm amplitude detected in Fig. 4 at a frequency
ω far from resonance corresponds to an electric field de-
tection of 0.46 mV/m or 73 yN/ion. These force and
electric field sensitivities can be improved by the Q of the
COM mode by probing near resonance with ωz. Qual-
ity factors Q ∼ 106 should be possible with trapped-ion
COM modes. The detection of a 20 pm amplitude result-
ing from a 100 ms coherent drive on the 1.57 MHz COM
mode is sensitive to a force/ion of 5×10−5yN correspond-
ing to an electric field of 0.35 nV/m. Electric field sens-
ing below ∼ 1 nV/m enables searches for hidden-photon
dark matter [32, 33], although shielding effects must be
carefully considered. Ion traps typically operate with fre-
quencies ωz/2π between 50 kHz and 5 MHz, providing a
sensitivity to hidden-photon masses from 2 × 10−10 eV
to 2× 10−8 eV.

By sensing COM motion far from resonance, we cali-
brate the measurement imprecision of our protocol in the
absence of thermal noise and back action. Probing on
resonance with a measurement imprecision below zZPT
will be sensitive to thermal fluctuations and back action
due to spin-motion entanglement [19]. This motivates
the investigation of potential back-action-evading proto-
cols with trapped ion set-ups. For the phase coherent
measurement of a single quadrature, back action due to
spin-motion entanglement can be evaded through the in-
troduction of the appropriate correlations between spin
and motion [34].

In summary, we have presented a technique for am-
plitude sensing below zZPT of a trapped ion mechanical
oscillator. By employing a spin-dependent force to cou-
ple the spin and motional degrees of freedom of the ions,
the amplitude of the COM motion may be determined.
We detected a 500 pm amplitude in a single experimental
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trial and demonstrated a long measurement time sensi-
tivity of (100 pm)

2
/
√

Hz with a protocol where the phase
of the measured quadrature randomly varies. Modifica-
tions of our set-up should enable repeated measurements
of the same quadrature, with a measurement imprecision
of 74 pm for a single experimental trial with N = 100
ions, providing opportunities for trapped ion mechanical
oscillators to explore the quantum limits of amplitude
and force sensing, and enable new tools in the search for
physics beyond the standard model.
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