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In this work we realize a narrow spectroscopic feature using a technique that we refer to as
magnetically-induced optical transparency. A cold ensemble of 88Sr atoms interacts with a single
mode of a high-finesse optical cavity via the 7.5 kHz linewidth, spin forbidden 1S0 to 3P1 transition.
By applying a magnetic field that shifts two excited state Zeeman levels, we open a transmission
window through the cavity where the collective vacuum Rabi splitting due to a single level would
create destructive interference for probe transmission. The spectroscopic feature approaches the
atomic transition linewidth, which is much narrower than the cavity linewidth, and is highly immune
to the reference cavity length fluctuations that limit current state-of-the-art laser frequency stability.

There has been a dedicated effort in recent years to im-
prove the frequency stability of lasers [1] used to probe
optical atomic clocks [2–4]. Improvements in these preci-
sion measurement technologies are essential for advanc-
ing a broad range of scientific pursuits such as searching
for variations in fundamental constants [5] , gravitational
wave detection [6, 7], and physics beyond the standard
model [8, 9]. Associated improvements in atomic clocks
would also advance recent work on relativistic geodesy
[10].

The frequency stability of current state-of-the-art
lasers is limited by thermal fluctuations in the refer-
ence cavity mirror coatings, substrates, and spacer [11].
This problem can be alleviated by creating systems that
rely on an ensemble of atoms, rather than the reference
cavity, to achieve stable optical coherence. Recent ap-
proaches include cavity-assisted non-linear spectroscopy
[12–14] and superradiant lasers [15–18]. Both approaches
use narrow forbidden transitions with linewidths ranging
from 7.5 kHz to 1 mHz. These novel systems are absolute
frequency references and are intrinsically less sensitive to
both fundamental thermal and technical vibrations that
create noise on the optical cavity’s resonance frequency.

Here we demonstrate a new linear spectroscopy ap-
proach in which a static magnetic field can induce optical
transparency in the transmission spectrum of an optical
cavity. The center frequency of the transparency win-
dow is shown to be insensitive to changes in the cavity-
resonance frequency and to first-order Zeeman shifts.
The observed linewidth of the feature approaches the
natural linewidth of the 7.5 kHz optical transition and
can be insensitive to inhomogeneous broadening of the
atomic transition frequency. The linewidth of the fea-
ture is an important attribute for laser stabilization, as a
laser stabilized to a narrow spectroscopic feature is less
sensitive to technical offsets than a laser stabilized to a
broader feature. In the future, it might be possible to ex-
tend this technique to even narrower optical transitions
for enhanced spectroscopic sensitivity in atoms such as
calcium and magnesium.

In analogy to electromagnetically induced trans-

parency (EIT) [19–21], we refer to this effect as magnet-
ically induced transparency (MIT) [22]. In EIT, a con-
trol laser is used to create a variable-width transparency
window for slowing light [23], for stopping light [24], for
quantum memories [25], and even for creating effective
photon-photon interactions [26–28]. It might be possible
to utilize controlled magnetic fields and long-lived optical
states to realize similar goals.

In our experiment we create a strongly coupled atom-
cavity system by loading up to N = 1.3×106 88Sr atoms
into a 1D optical lattice supported by a high-finesse op-
tical cavity. The peak trap depth is 100(10) µK and
the atoms are laser-cooled to 10(1) µK (see Fig. 1a and
Refs. [16, 17, 29]). We tune a TEM00 resonance of
the cavity at frequency ωc to be near resonance with
the dipole-forbidden singlet to triplet optical transition
1S0 to 3P1 at frequency ω0 or wavelength 689 nm (see
Fig. 1b). The excited state 3P1 spontaneously decays
back to the ground state at a rate γ = 2π× 7.5 kHz, and
the cavity power decays at rate κ = 2π × 150.3(4) kHz.
In 88Sr, the absence of nuclear spin means that the 1S0

ground state is unique, while the 3P1 excited state has
three Zeeman sublevels (see Fig. 1b.)

In the limit of zero applied magnetic field, our sys-
tem responds to an applied probe as though each atom
were a simple two-level system. The ensemble can collec-
tively absorb light from and then collectively reemit light
into the cavity mode at the so-called collective vacuum
Rabi frequency Ω =

√
N2g. Here 2g/2π = 15 kHz is

the rms value of the single-atom vacuum Rabi frequency,
which accounts for averaging over the standing-wave cav-
ity mode. This exchange creates two new transmission
modes that are shifted away from the empty cavity’s
transmission peak by ±Ω/2, as shown by the central red
trace in Fig. 2a.

Because two orthogonal components of the probe light
can couple to two distinct Zeeman sublevels, the coupled
atom-cavity system has three normal modes of excita-
tion, not two (see Fig. 1b and c.) In addition to the
two modes at ±Ω/2 that lead to the transmission peaks,
which we will refer to as the ‘bright’ modes, there is a
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third ‘dark’ mode whose frequency is equal to that of
the atomic transition. The dark mode is composed of an
equal superposition of the two atomic excited states and
a photonic component that vanishes as the magnetic field
approaches zero.

SPCM

(b)

(a) 

FIG. 1. (a) Simplified experimental diagram. The system
is probed with horizontally polarized probe light. The light
can be coherently absorbed by the atoms (brown ovals) and
reemitted into the cavity at collective vacuum Rabi frequency
Ω. The transmitted power is detected on a single photon
counting module (SPCM). A magnetic field is applied along
the vertical direction. (b) The atomic energy level diagram of
the ground 1S0 and excited states 3P1 |mj〉 with quantization

axis q̂ parallel to the applied magnetic field ~B. This is the
viewpoint adopted in this letter. Here, the applied magnetic
field creates a Zeeman splitting ∆ between the excited states
|±1〉. Both of these transitions interact equally with the hor-
izontally polarized light inside the cavity with collectively en-
hanced Rabi frequency Ω/

√
2. The transmitted probe light is

measured as the probe’s detuning δp is swept. The |0〉 state is
shown, but it does not interact with the horizontally polarized
cavity-field.

By applying a magnetic field B, we can mix photonic
character into the dark mode, inducing transmission (also
refered to as transparency) for probe light near ω0. The
probe light is horizontally polarized and is perpendicular
to the vertically oriented magnetic field. Each trace in
Fig. 2a corresponds to a different applied magnetic field
with strength parameterized by the induced Zeeman fre-
quency splitting ∆/2π = (2.1 MHz/G)B.

To describe the system, we extend the linearized input-
output equations of [30] to include an additional atomic
transition written in a rotating frame at the average
atomic transition frequency ω0 as:

FIG. 2. (a) The transmitted power through the cavity versus
the probe detuning δp, with δc = 0. Each trace was taken
for different applied magnetic fields, creating different Zee-
man splittings ∆ labeled on the vertical. The central red
trace is taken for ∆ = 0 and displays a collective vacuum
Rabi splitting Ω/2π = 5 MHz. When a magnetic field is
applied perpendicular to the probe polarization, inducing a
Zeeman splitting ∆, a new transmission feature appears in
between the two original resonances of the vacuum Rabi split-
ting. (b) Linearized theory showing the power PT and phase
ψ of the transmitted light, plotted here for Ω/2π = 5 MHz
and ∆/2π = 1 MHz.
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Here, δc = ωc − ω0 is the detuning of the cavity reso-
nance frequency ωc from atomic resonance, Ω is the ob-
served collective vacuum Rabi splitting when ∆ = 0, γ
is the decay rate of the excited atomic states, κ is the
cavity power decay rate, and κ1 is the coupling of the
input cavity mirror that is driven by an externally in-
cident probe field with complex amplitude ci and at a
probe frequency ωp and detuning from atomic resonance

δp = ωp − ω0. The complex variables a = 〈â〉, b = 〈b̂〉,
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c = 〈ĉ〉 are expectation values of bosonic lowering oper-
ators describing the cavity c, and collective excitations
of the two atomic transitions a and b. The required
Holstein-Primakoff approximation assumes weak excita-
tion such that the number of atoms in the excited states
Ma = |a|2, Mb = |b|2 � N is a small fraction of the
total atom number N . The average number of photons
in the cavity is given by Mc = |c|2, and the complex field
transmitted through the cavity is ct =

√
κ2c with κ2 the

coupling of the output mirror. The transmitted probe
power relative to incident probe power is PT = |ct/ci|2
and the relative phase is ψ = arg (ct/ci).

Figure 2b shows the calculated steady-state transmit-
ted power and phase for a single Zeeman splitting. The
phase response changes rapidly near zero probe detun-
ing, which results in a narrow MIT resonance compared
to the broad vacuum Rabi splitting or bright modes for
which the phase changes more slowly.

In order to describe the linewidth of the dark state
resonance, we introduce a mixing angle θ defined by
sin2 θ = ∆̄2/(Ω2 + ∆̄2). Here, the effective detuning is
∆̄2 = ∆2+γ2. The character of the dark state excitation
is given by the ratio of the probability that the excitation
is photonic-like Pc = Mc/(Mc+Ma+Mb) = sin2 θ versus
atomic-like Pab = (Ma +Mb)/(Mc +Ma +Mb) = cos2 θ.
The dark state excitation can decay into free space at
rate Rab or by emission through the cavity mirrors Rc,
with the ratio of the rates given simply by Rab/Rc =
γ/(κ tan2 θ) = NC(γ/∆̄)2, where the single particle co-
operativity parameter is C = 4g2/κγ.

The linewidth of the dark state resonance can be writ-
ten as:

κ′ = (γ cos2 θ + κ sin2 θ)/b. (4)

The term in parentheses is a weighted average of atom
and cavity linewidths that reflects the character of the
mode. The correction factor is b = d cos2 θ+sin2 θ, where
d = (∆2 − γ2)/∆̄2. When ∆ � γ, both b and d ap-
proach unity. At small detunings ∆ ∼ γ, the responses
of the dark and bright modes to the applied drive be-
come comparable, causing a modification of the correc-
tion factor. In the regime experimentally explored here
(b ≈ 1), κ′ is simply the full width at half maximum
linewidth of the power transmission feature. To define
a linewidth valid in general, we define the linewidth via
κ′ = 2 (dψ/dδp)

−1 |δc=δp=0. For Ω� ∆� γ, the mixing
angle is small and the linewidth approaches the atomic
linewidth κ′ ≈ γ, which can be much narrower than the
cavity linewidth κ.

We measure the linewidth for the central dark reso-
nance by linearly sweeping the probe laser’s frequency
over the cavity resonance and recording a time-trace of
power transmitted on a single photon counting module.
A Lorentzian is fit to the central feature to extract the
full width at half maximum. This measurement is taken

for a range of different Zeeman splittings and vacuum
Rabi splittings by varying the applied dc magnetic field
and atom number respectively. Figure 3a shows collected
data plotted against the theoretical prediction at several
Rabi frequencies. For very small ∆ the feature becomes
increasingly narrow, approaching the atomic transition
linewidth γ = 2π×7.5 kHz. For very large ∆ the feature
linewidth approaches the cavity decay rate κ.

(a)

(b)

FIG. 3. (a) The measured linewidth of the central MIT trans-
mission feature versus the induced Zeeman splitting between
excited states. The traces are taken for three different col-
lective vacuum Rabi frequencies Ω/2π = 4.6(5) (red), 10(1)
(blue), and 16(1) (green) MHz, with values set by changing
the total atom number N . The upper dashed line is the empty
cavity’s linewidth κ, and the lower dashed line is the atomic
transition’s linewidth γ. The minimum observed linewidth
was 11 kHz. The shaded regions are no-free parameter pre-
dictions from the linearized model introduced in the text, in-
dicating the ±1 standard deviation uncertainty bands based
on independent measurements of Ω. (b) The measured peak
transmitted power of the central MIT transmission feature for
the same collective Rabi frequencies. Here, the transmitted
power is normalized to the peak transmitted power when the
cavity is empty. Again the shaded regions indicate the ±1
standard deviation uncertainty bands for the predictions.

Figure 3b shows the peak transmitted power at the
MIT feature’s resonance for the same data show in
Fig. 3a. The linearized theory predicts that the peak
transmitted power is given by:

Pmax =
4κ1κ2
κ2

1(
1 + γ

κ tan2 θ

)2 . (5)
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Note that the term in the denominator above is just the
ratio of excitation decay rates Rab/Rc. For large detun-
ings ∆� Ω, γ, the peak transmission goes to that of an
empty cavity Pmax → Pempty = 4κ1κ2/κ

2.
In the regime experimentally explored here, a change

in the cavity resonance frequency ωc by ∆ωc leads to
a change in the dark state resonance frequency ωD by
a much smaller amount ∆ωD. The pulling coefficient
P = ∆ωD/∆ωc expresses this ratio. A small pulling co-
efficient P � 1 is desirable for a frequency reference as it
will be less sensitive to thermal fluctuations and technical
noise on the reference cavity. We can extract a pulling
coefficient applicable to all parameter regimes from the
linearized theory by considering how much the probe and
cavity detunings would have to change to create equal
changes in the quadrature amplitude of the transmitted
field (such as one might measure using homodyne detec-
tion). This general pulling coefficient can be expressed
as:

P =
sin2 θ

b
. (6)

In the typical regime of operation (b ≈ 1), this is simply
the cavity-like fraction of the dark excitation.

In Fig. 4, we show the measured pulling coefficient ver-
sus splitting ∆ for several values of Ω, along with the
predicted pulling coefficients from the linearized theory.
The pulling coefficients were measured by sweeping the
probe laser frequency across the dark resonance and fit-
ting the center frequency ωD with a Lorentzian fit model.
This is then repeated while toggling ωc between two val-
ues separated by 100 kHz, and the pulling coefficient is
determined from the change in ωD versus ωc. Our lowest
measured pulling coefficients are below P = 0.05.

In principle, ∆ can be reduced further to reach a
smaller pulling coefficient, at the expense of transmitted
power. The theoretical pulling coefficient reaches a min-
imum value of P = 1/(1 +N/(8Mc)) at ∆ =

√
3γ, where

Mc = (γ/(2g))2 is the so-called critical photon number.
The critical photon number is proportional to the cavity
mode volume and atomic linewidth, but does not depend
on the mirror reflectivity. As a result, small pulling coef-
ficients are reached by working with small cavity volumes
and very narrow linewidth transitions. For spectroscopic
applications, one would want to balance the desire for a
low pulling coefficient against the need to collect trans-
mitted photons without inducing heating in the atomic
ensemble due to free-space scattering. The optimal pa-
rameter regime will depend on the specific requirements
of the system.

While the majority of this work has been done with
the atoms trapped in the Lamb-Dicke regime (i.e. con-
fined to much less than the wavelength of the probe light)
with respect to the cavity axis, we have also performed
scans of the cavity transmission spectrum in which the
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FIG. 4. The pulling coefficient P versus Zeeman splitting ∆
for several collective vacuum Rabi frequencies Ω/2π = 5(1)
(red), 10(1) (blue), and 17(1) (green) MHz. The prediction
from the linearized theory is shown with ±1 standard devia-
tion bands.

atoms were unconfined along the cavity axis. In this con-
figuration, the rms Doppler shift along the cavity axis is
roughly 45 kHz. Despite this inhomogeneous broadening,
we observe a center feature linewidth of 18.5 kHz, which
we believe is limited by technical noise on the cavity fre-
quency that arises when we turn down the lattice depth
to release the atoms. We expect the linewidth of the dark
feature to be insensitive to inhomogeneous broadening so
long as ∆ is much larger than the inhomogeneous broad-
ening [31]. This insensitivity to Doppler broadening may
make such techniques suitable to continuously operating
atomic beam experiments, where confining the atoms to
the Lamb-Dicke regime would be challenging.

To summarize, we have demonstrated a technique to
realize a narrow spectroscopic feature based on collective
interaction between an ensemble of atoms and a high fi-
nesse optical cavity. The center frequency of the feature
can be made highly insensitive to changes in cavity reso-
nance frequency. In analogy to EIT, this technique may
also be applicable to tasks relevant for information pro-
cessing. From time reversal symmetry arguments and the
hierarchy Ω � κ � γ, the theoretical maximum storage
and retrieval efficiencies PR are given approximately by
PR ≈ 1− (π/2)(γ/Ω) [32]. This should be compared to a
theoretical maximum efficiency PR ≈ 1 − κγ/Ω2 for the
more typical assumptions κ� Ω, Ω2 � κγ, and that the
storage state does not decay [33].
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