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We report on two ultrastable lasers each stabilized to independent silicon Fabry-Pérot cavities
operated at 124 K. The fractional frequency instability of each laser is completely determined by
the fundamental thermal Brownian noise of the mirror coatings with a flicker noise floor of 4×10−17

for integration times between 0.8 s and a few tens of seconds. We rigorously treat the notorious
divergencies encountered with the associated flicker frequency noise and derive methods to relate
this noise to observable and practically relevant linewidths and coherence times. The individual
laser linewidth obtained from the phase noise spectrum or the direct beat note between the two
lasers can be as small as 5 mHz at 194 THz. From the measured phase evolution between the two
laser fields we derive usable phase coherence times for different applications of 11 s and 55 s.

It is well known that frequency is the physical quantity
that can be measured with by far the highest accuracy.
“Never measure anything but frequency!” was the advice
of Arthur Schawlow [1]. The high accuracy results from
the fact that the phase of a purely periodic signal can
be measured in the simplest case by counting the zero
crossings of the signal within a given time or with even
increased accuracy by a phase measurement that inter-
polates the signal between the zero crossings. Hence,
the generation of truly phase coherent signals over long
times is the key to precision measurements and enabling
technologies. In the most advanced optical atomic clocks
[2–5] pre-stabilized lasers serve as oscillators to interro-
gate ultranarrow optical transitions with linewidths of
a few mHz. Oscillators with coherence times of tens to
hundreds of seconds will allow for investigations of ex-
tremely small energy shifts in the clock transition, caused
by sources such as interactions amongst atoms [6, 7]. Ul-
trastable oscillators beyond the state of the art will find
useful applications in sub-mm very long baseline interfer-
ometry (VLBI) [8], atom interferometry and future atom-
based gravitational wave detection [9–11], novel radar ap-
plications [12], the search for dark matter [13], and deep
space navigation [14]. Consequently, large effort has been
put into the development of extremely coherent sources
based on highly stable optical Fabry-Pérot resonators
[15–18]. Alternative schemes are currently being inves-
tigated using cavity-QED systems [17, 19] and spectral-
hole burning in cryogenically cooled crystals [20].
Here we report on the coherence properties of two

cavity-stabilized laser systems operating at a wavelength
of 1542 nm. Our systems are based on well-isolated
single-crystal silicon Fabry-Pérot resonators, tempera-
ture stabilized at 124 K. For a system that has well de-
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signed locking electronics, the fractional frequency sta-
bility of the laser is given by the fractional stability of
the optical length of the cavity. Fundamentally, the cav-
ities’ length stability is limited by statistical Brownian
noise of the mirror coatings, substrates, and spacer [21].
Due to the inherently low thermal noise of crystalline sil-
icon, the cavities’ length fluctuations are dominated by
the dielectric mirror coatings, despite their thickness of
only a few tens of micrometers. The cryogenic cooling
of the cavities further reduces the thermal noise and al-
lows for a fractional length instability of the cavities of
∆L/L ≈ 10−17.
Previously, with such a system (named Si1) we demon-

strated a frequency instability of 1×10−16 [15]. We have
now set up two systems (named Si2 and Si3) where we
have reduced all additional noise sources [22] to a level
well below the thermal noise limit.
In the following we describe briefly the set-up [23] and

the analysis of the frequency stability and the phase
noise. We subsequently derive methods to relate the
dominant flicker frequency noise to observable and prac-
tically relevant linewidths and coherence times.
Each cavity consists of a plano-concave mirror pair em-

ploying high-reflectivity Ta2O5/SiO2 dielectric multilay-
ers. The finesse of the TEM00 mode of each cavity is
close to 500 000. The 212 mm long spacer and the mirror
substrates are machined from single-crystal silicon [15].
The crystal orientation of the optically contacted sub-
strates is aligned to that of the spacer. Both have the
silicon 〈111〉 axis oriented along the cavity axis.
The cavities are aligned vertically and are supported

at three points near the midplane in order to minimize
the impact of seismic and acoustic vibrations on their
length stability. The anisotropic elasticity of silicon was
used to minimize the vertical vibration sensitivity below
10−12/(m s−2) by adjusting the azimuthal angle between
the cavity and its tripod support [22].
The cavities are placed in separate vacuum systems at

a residual pressure below 10−9 mbar. The cavity tem-
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perature is stabilized to 124 K where a zero crossing
of the coefficient of thermal expansion of silicon occurs
[15, 22]. Each system is mounted on separate optical
tables, about 3 m apart. The systems have their own
active vibration isolation platforms and are surrounded
by individual acoustic and temperature insulation boxes.
They strongly suppress individual and thus also common
noise contributions to below the thermal noise level on
timescales up to several minutes [22].
Commercial Er-doped distributed feedback (DFB)

fiber lasers at 1542 nm (ν0 = 194.4 THz) are frequency
stabilized to the cavities using the Pound-Drever-Hall
(PDH) method [24]. Fiber-coupled acousto-optic modu-
lators (AOM) are used for the fast servo allowing locking
bandwidths of around 150 kHz. Active residual ampli-
tude modulation (RAM) cancellation [25] is employed to
keep the corresponding fractional frequency fluctuations
below the thermal noise level of the system [22].
To obtain the individual frequency instabilities of the

Si2 and Si3 lasers, we compared them to a third ultra-
stable laser based on a 48 cm long ultra low expansion
glass (ULE) cavity at 698 nm [16]. The frequency gap be-
tween the 1.5µm Si2 system and the 698 nm ULE-cavity
laser was bridged using a fiber-based optical frequency
comb as a transfer oscillator [26, 27]. The comb intro-
duces negligible noise that is below the thermal noise
floor of the ULE cavity. Additional noise arising from
the optical fibers connecting the lasers and the frequency
comb is suppressed with active noise cancellation [28].
We measured the beat frequencies ‘Si2 – Si3’ and ‘Si2

– ULE’ using synchronized counters [29]. The third beat
frequency ‘Si3 – ULE’ is calculated as their difference
which is justified since our beat measurement system
does not introduce appreciable additional noise.
We do not expect correlations between the ULE-cavity

system, the optical frequency comb and the Si-systems,
since they reside in three different rooms. Thus, the three
difference frequencies allowed us to derive the three indi-
vidual instabilities from a simple three-cornered hat anal-
ysis [30] (Fig. 1). The relative linear frequency drift be-
tween Si2 and Si3 of about 100 µHz/s (comparable with
the figure reported in Ref. [31]) and between Si2 and the
ULE laser of 15 mHz/s is removed.
The three-cornered hat results (Fig. 1) [33] indicate

that for averaging times from 0.8 s up to 10 s the instabil-
ity of each Si-based laser system is at the expected ther-
mal noise flicker floor of mod σy = 4×10−17. This corre-
sponds to a standard Allan deviation of about 5× 10−17

[34]. For short averaging times the increase in the in-
stability is due to residual vibration and acoustic noise.
At long averaging times we see the effect of slow tem-
perature fluctuations affecting the cavity length and of
parasitic etalons in the optical setup.
A more complete characterization of the noise pro-

cesses is given by the power spectral density (PSD) of
the phase fluctuations. We have determined the phase of

FIG. 1. (Color online) Modified Allan deviation for Si2
(squares), Si3 (circles) and ULE laser (diamonds) derived
from three-cornered hat estimations. We used a 3.4 h dataset
for 10 ms ≤ τ ≤ 4 s and a 24.2 h dataset for 8 s ≤ τ ≤ 8192 s,
recorded in the same day. The green line represents the ex-
pected thermal noise of the silicon cavities. The dashed line
illustrates the instability where the rms phase fluctuations are
1 rad for a given τ [32]. The intersections with the instabil-
ity curves of the Si-lasers result in coherence times of around
11 s. Linear frequency drifts in each dataset were subtracted.
The inset shows a schematic of the measurement setup.

the beat signal from the measured in-phase and quadra-
ture signal components. From more than 37 hours of
phase data we determine the phase noise spectrum of a
single laser down to Fourier frequencies of 0.1 mHz (Fig.
2), modeled as

Sφ(f) = ν20

0∑
k=−2

hkf
k−2. (1)

From 1 mHz to 1 Hz the noise spectrum closely fol-
lows the thermal frequency flicker noise with h−1 =
2.5 × 10−33, in agreement with the expected thermal
noise. From 1 Hz to 3 kHz the seismic and acoustic
perturbations above the thermal noise lead to a num-
ber of narrow peaks. The base line of the spectrum can
be approximated by white frequency noise with h0 =
3.6 × 10−33 Hz−1 consistent with the increase of the in-
stability at short averaging times (Fig. 1). Other possible
sources such as photon shot-noise, RAM, laser power fluc-
tuations are well below that level. At higher frequencies,
the three broad peaks at 8 kHz, 60 kHz, and 150 kHz re-
sult from the servo loops for RAM regulation, fiber noise
cancellation and PDH lock to the cavity, respectively.
Below 1 mHz slow temperature fluctuations lead to a
random walk frequency noise with h−2 = 4 × 10−36 Hz,
corresponding to the Allan deviation values above 100 s.
In the following we use this data to derive values for

laser linewidth and coherence time. Usually, linewidth
and coherence time are derived from the autocorrelation
function of the laser field with amplitude E0 and center
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FIG. 2. (Color online) PSD of phase fluctuations of a Si sta-
bilized laser, obtained as one half of the PSD of the Si3 – Si2
beat. The red line shows the expected flicker frequency noise
corresponding to the thermal noise at T = 124 K. The inset
shows the rms phase noise integrated down from 10 MHz. A
value of 1 rad2 is obtained after integrating down to 6.8 mHz
(blue markers) leading to a FWHM linewidth of 13.6 mHz.

frequency ν0,

RE(τ) = E2
0e

i2πν0τe−1/2〈(φ(t+τ)−φ(t))2〉, (2)

= E2
0e

i2πν0τe
−2

∫
∞

0
Sφ(f) sin

2(πfτ)df
.

Flicker frequency noise and random walk frequency noise
are the dominant noise processes in our lasers. In this
case the laser frequency ν(t) is nonstationary and RE(τ)
is divergent so that no unique coherence function can be
assigned. This also leads to divergences in the general
definition of the field spectrum SE(δν) as the Fourier
transform of the autocorrelation function RE(τ) (Eq. 2)
and thus no uniquely defined linewidth exists. Neverthe-
less we can derive linewidths that are closely related to
the experimental observations.
If a spectrum is recorded for a measurement time T0

the linewidth is limited by the Fourier width proportional
to 1/T0 for short measuring times whereas for longer mea-
surement times the nonstationary frequency fluctuations
broaden the line. In such a case a practical linewidth can
be defined by the minimum.
To elaborate this approach Bishof et al. [18] make the

assumption that only Fourier components of the phase
noise spectrum for frequencies f > 1/T0 contribute dur-
ing the measurement time T0. From our phase noise
model (Eq. 1) we obtain a minimal single laser linewidth
of ∆νFWHM = 7 mHz for T0 = 170 s [35].
Experimentally we obtain linewidths from a fast

Fourier transform (FFT) of the beat between the two
lasers, after the beat is mixed down to a carrier frequency
suitable for data acquisition. We choose 200 s measure-
ment time to allow for sufficiently high frequency resolu-
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FIG. 3. (Color online) FFT spectrum of the beat note be-
tween lasers Si2 and Si3 (Hanning window, frequency resolu-
tion 7.2 mHz).

tion while keeping the influence of slow frequency fluctua-
tions small enough. Experimentally, in about 43% of the
measurements [36] we obtain full-width-half-maximum
(FWHM) linewidths of the beat signal between 7 mHz
and 14 mHz (see Fig. 3), leading to individual linewidths
∆νFWHM between 5 mHz to 10 mHz, assuming that both
lasers contribute equally to the linewidth. This standard
approach of measuring the linewidth seems to give a rea-
sonable agreement with the calculated minimal linewidth
of 7 mHz according to [18].

To provide a linewidth estimate that includes all fluc-
tuations of the flicker frequency noise, we averaged all
FFT spectra obtained from the data set of 37 h after
first aligning their centers of mass [36]. This results in
an average linewidth for a single laser of about 13 mHz
for a measurement time of 150 s. The difference between
this longterm averaged value and the calculated mini-
mal linewidth can be explained by the different ways the
low-frequency cut-off is introduced. If a FFT spectrum
analyzer is used the spectrum is centered at the average
frequency during the measurement time T0 which cor-
responds to a subtraction of the linear phase evolution
term. Thus significant quadratic terms still contribute
to the phase excursion which correspond to noise at fre-
quencies of approximately 1/2T0 that is not included in
the approximation of [18]. The narrower linewidths that
we have observed (Fig. 3) are cases where the random
quadratic term happened to be small.

Many applications are not directly sensitive to the
FWHM linewidth but require sufficient spectral power
in a narrow bandwidth ∆νP. This bandwidth can be
estimated by integrating the phase noise from high-
frequencies towards zero [37, 38]. The half bandwidth
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is obtained as the lower integration limit in

∫ ∞

∆νP/2

Sφ(f) df = 1 rad2 , (3)

corresponding to the case when one third of the power is
contained in the bandwidth ∆νP [38]. For this definition
we find a value of ∆νP = 14 mHz (see inset of Fig. 2).

For many applications it is important to provide effec-
tive coherence times of ultrastable oscillators. For this
purpose, depending on the particular application, differ-
ent methods must be employed to adequately consider
the nonstationary frequency.

As an example more adequate for optical clocks we
investigate a two-pulse Ramsey interrogation of atoms.
There, an average frequency and frequency drift can be
estimated from past measurements and considered in the
current interrogation in order to keep the phase excur-
sions ∆φ between the two pulses sufficiently small.

We simulate such a scenario using the phase evolution
of the ‘Si2 – Si3’ beat recorded for 1 day. We cut this
dataset into short samples and fit a linear phase to the
first 4 s (i.e., observation interval T0) to determine the
average frequency ν. The phase 2πνt is subtracted and
the phase at t = 0 is set to zero to obtain the phase
deviation ∆φ for t ≥ 0. Fig. 4 shows 100 of these sam-
ples, which indicate a time-dependent broadening. The
root-mean-square deviation ∆φrms(t) of the normally dis-
tributed phase deviation was calculated from 20 750 sam-
ples (±∆φrms indicated by red lines). The coherence is
certainly lost when the phase has acquired an uncertainty
of ∆φrms ≈ π (at t ≈ 30 s) but depending on the appli-
cation, more restricting definitions of the coherence time
are in use. In a more conservative way we define the
coherence time as a duration in which ∆φrms has in-
creased to 1 rad (i.e.,

√
2 rad for the phase difference

between the two independent lasers shown in Fig. 4). In
agreement with the value estimated from the Allan de-
viation (Fig. 1) [32], this leads to a coherence time of
11 s. This is equivalent to saying that after 11 s in more
than 99% of all cases the actual phase excursions remain
below ±π ≈ 3∆φrms, which ensures unambiguous phase
tracing. We find that this value of 11 s represents a broad
maximum in the coherence time when the Ramsey inter-
rogation time varies between 4 s and 20 s [32].

Besides situations where the future phase must be pre-
dicted there are many applications where the average fre-
quency can be determined in retrospect from the mea-
surement itself. Typical examples are spectral analysis,
when the spectrum is centered, or the Rabi interrogation
of atoms by single pulses, where the observed excitation
provides the information of the average frequency during
the measurement time. Analysis of our measured phase
data shows that in this case a rms phase deviation of
∆φrms = 1 rad occurs at measurement intervals of about
55 s [32].
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FIG. 4. (Color online) The evolution of the phase difference
between the two Si lasers. The first 4 s segment T0 is used to
estimate the average frequency ν at t = 0 s. For t = 0− 12 s,
the phase deviation from the expected 2πνt is calculated. 100
consecutive curves are shown with thin gray lines. The red
lines indicate the ±∆φrms range, evaluated statistically from
20 750 curves.

In conclusion, we have demonstrated the operation of
two cryogenic optical silicon cavities at the thermal noise
limit of mod σy = 4 × 10−17. The light stabilized on
these cavities is highly coherent, with a coherence time
of 11 s and 55 s, respectively. As seen from the spectral
analysis, the linewidth and implicitly the coherence time
are mostly determined by the thermal noise level. With
this kind of laser sources we are now entering the regime
where the frequency stability of the interrogation laser
is on a par with the quantum projection noise limit of
today’s most stable optical clocks (e.g. [39, 40]).
Optimizations of the current setup would hardly bring

a longer coherence time since we are nearing a fundamen-
tal limit. The only way of further improving the current
performance is to decrease the thermal noise even fur-
ther. One approach is to decrease the temperature, thus
reducing the thermal motion in the system. For an op-
erating temperature of 4 K the expected thermal noise
would be 8 × 10−18 in the modified Allan deviation. A
comparable noise figure would be achieved by employing
AlGaAs-based crystalline coatings, which offer a higher
mechanical Q-factor and thus a lower thermal-induced
noise [41, 42]. If both methods are implemented, the
thermal noise would be reduced to the lower half of the
10−18 range, roughly an order of magnitude lower than
the present level. To ensure that this improvement leads
to an increased coherence time it is necessary to reduce
the longterm instability for averaging times above 10 s
(see intersection of dashed line with the thermal noise
level in Fig. 1) while the present short-term instability
seems to be sufficiently small.
Our rigorous analysis of linewidth and coherence time
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will be tremendously important when we start using this
state-of-the-art laser e.g. for investigations of classical
and/or quantum correlated atoms [43]. Achieving en-
hanced stability from quantum correlation (such as spin
squeezing) will need a local oscillator that does not intro-
duce excessive phase noise which can easily remove the
benefit of correlation [44].
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