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A quantum critical system described at low energy by a conformal field theory (CFT) and sub-
jected to a time-periodic boundary drive displays multiple dynamical regimes depending on the
drive frequency. We compute the behavior of quantities including the entanglement entropy and
Loschmidt echo, confirming analytic predictions from field theory by exact numerics on the trans-
verse field Ising model, and demonstrate universality by adding non-integrable perturbations. The
dynamics naturally separate into three regimes: a slow-driving limit, which has an interpretation as
multiple quantum quenches with amplitude corrections from CFT; a fast-driving limit, in which the
system behaves as though subject to a single quantum quench; and a crossover regime displaying
heating. The universal Floquet dynamics in all regimes can be understood using a combination of
boundary CFT and Kibble-Zurek scaling arguments.

Recent years have witnessed substantial progress in
understanding the dynamics of periodically driven (Flo-
quet) systems. Such driving has traditionally been used
for engineering non-trivial effective Hamiltonians [1–4],
but recent research has shown that these dynamics can
differ drastically from their static counterparts. Exam-
ples include the recently observed Floquet time crys-
tals [5–9], the emergence of topological quasiparticles
protected by driving [10, 11], Floquet topological insula-
tors [12–17], and Floquet symmetry-protected topolog-
ical phases [18–21]. More broadly, periodically driven
systems touch on fundamental issues in statistical and
condensed-matter physics such as thermalization [22–26]
and phase structure [5].

However, relatively little attention has been paid to
driven systems at criticality, whose low-energy dynamics
are often described by a conformal field theory (CFT).
Such quantum critical systems are a natural setting in
which to study Floquet dynamics, as many insights into
the non-equilibrium dynamics of many-body systems
have come from the study of CFTs in 1+1d [27–30]. A
näıve expectation is that such a driven critical system
would simply heat up. However, in the presence of a
boundary drive, the energy injected per cycle is not ex-
tensive in system size, and there are multiple possible
behaviors in an arbitrarily long period prior to thermal-
ization. Moreover, as CFTs are integrable, it is natural
to expect they can escape heating even at low frequen-
cies provided the scaling limit is taken before the long
time limit. This opens the door to using scaling the-
ory combined with the analytical toolkit of boundary
CFT [31–34] to characterize multiple regimes of univer-
sal dynamics in such boundary driven quantum critical
points.

In this Letter, we study the dynamics of entanglement

entropy Sl(t) and Loschmidt echo L(t) =
∣∣〈ψ(0)

∣∣ψ(t)
〉∣∣2

in conformally-invariant quantum critical systems sub-
ject to a periodic boundary drive. We find two distinct
regimes in which boundary conformal field theory pro-
vides an excellent description of the dynamics. For suit-
ably slow drives, the system behaves almost as though

subject to a series of independent quantum quenches but
with amplitude corrections related to multiple-point cor-
relation functions, while for fast drives, the boundary
drive can be averaged out, and the system responds as
though subject to a single quench at an averaged value
of the field. For intermediate driving frequency, we find
universal heating which crosses over from a perturba-
tive regime at weak drive to non-perturbative boundary
CFT regime at strong drive. The dynamics in all driving
regimes are universal and can be described using field-
theoretic tools. We numerically confirm that the dynam-
ics remain robust against adding integrability-breaking
interactions up to the finite times that may be simulated.

Model. While our results apply to arbitrary
boundary-driven CFTs, for concreteness we will focus
on the archetypical transverse-field Ising (TFI) model on
the half-line with a time-dependent symmetry-breaking
boundary field

H = −
∑
i≥0

(
Jσzi σ

z
i+1 + hσxi + Γσxi σ

x
i+1

)
− hb(t)σz0 , (1)

with Γ an integrability-breaking perturbation and h ∼ J
tuned to the critical point. This model has a convenient
description in terms of free fermions when Γ = 0, seen
by performing a Jordan-Wigner transformation [35][36]
and is thus an ideal numerical test-bed for our model-
independent analytical arguments. We initially prepare
the system in the ground state at fixed boundary field
hb(t < 0) then quench on a periodic boundary drive,
hb(t + T ) = hb(t), for t ≥ 0. In equilibrium, the low
energy description of this spin chain at criticality is well-
understood in terms of gapless left- and right-moving
Majorana fields satisfying {ηR/L(x), ηR/L(y)} = δ(x−y),
with Hamiltonian

H = − iv
2

∫ ∞
0

dx (ηR∂xηR − ηL∂xηL)− λ(t)σb(0), (2)

where we dropped irrelevant terms. Here, v is a non-
universal velocity (v = 2J for Γ = 0) and λ ∝ hb. In this
Majorana formulation, the boundary spin can be repre-
sented as σb(0) = i(ηR + ηL)γ [37], where γ† = γ is an
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ancilla Majorana satisfying γ2 = 1 that anticommutes
with all fields. In the following, we will assume that
the drive is characterized by a single scale ‖hb(t)‖ ∼ hb
which we take to be much smaller than the single par-
ticle bandwidth hb � Λ ≡ 2J = 2 (setting J = 1), for
which field theory is a good equilibrium description. The
boundary field is a relevant perturbation with scaling di-
mension ∆ = 1

2 < 1 in the renormalization group (RG)
language, with characteristic time scale tb ∼ |hb|−νb ,
νb = (1−∆)−1 = 2.

There are three energy scales in this problem: the driv-
ing frequency ω = 2π/T , the bandwidth Λ, and the scale
of the boundary perturbation t−1

b ∼ hνbb � Λ. We will
now consider various orderings of these scales and ar-
gue that essentially all regimes can be understood us-
ing a combination of field theory and scaling arguments,
even though the drive is continuously injecting energy
into the system. While the Hamiltonian (1) for Γ = 0
can be mapped onto free fermions for numerical conve-
nience [38], we note that our main conclusions follow
from general field theory arguments and therefore con-
tinue to hold in the non-integrable case. We empha-
size that although we choose to focus on the Ising field
theory (2) as an example, our field-theoretic arguments
are model-independent, so our results carry over imme-
diately to any boundary driven CFT, such as a driven
quantum impurity problem with t−1

b → TK , the Kondo
temperature.

Slow driving regime: step drive. We start by consid-
ering the slow driving regime ω � t−1

b � Λ for a step
drive starting from the initial field hb(t < 0) = −hb
with hb(t) = +hb for 0 ≤ t ≤ T/2 (Hamiltonian H1)
and hb(t) = −hb if T/2 ≤ t ≤ T (Hamiltonian H0)
for t ≥ 0. Intuitively, this drive looks like indepen-
dent local quenches. Focusing on the Loschmidt echo

(return probability) L =
∣∣〈ψ0

∣∣ψ(t)
〉∣∣2 [39], this behav-

ior is best understood by Wick rotating to imaginary
time τ = it, where the spin-chain Loschmidt echo can
be mapped onto a CFT correlation function. After com-
puting this correlation function, we Wick rotate back to
real time to obtain the dynamical echo. In imaginary
time, the initial state can be generated by an infinite
imaginary time evolution limτ→∞ e−τH0

∣∣0〉 ∝ ∣∣ψ0

〉
from

arbitrary initial state
∣∣0〉. In imaginary time, exp(−τH)

acts as a projector onto the ground state of H, so for
large T � tb we essentially oscillate between the ground
states of H0 and H1, for which σz0 is locked in the direc-
tion of the boundary field ±hb. In the CFT language, a
sharp change in boundary conditions can be treated by
inserting a boundary-condition changing (BCC) opera-
tor [31], as diagrammed in Fig. 1. This means that the
Loschmidt echo L(NT ) after N periods of drive corre-
sponds to the 2N -point correlation function of a BCC
operator φBCC changing the boundary condition from
fixed σz0 = ±1 to σz0 = ∓1.

Analytically continuing to real time, we expect the
Loschmidt echo to be a universal function L(T/tb, N) in
the field theory regime. In the limit T � tb, this reduces
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FIG. 1. Slow driving regime ω � t−1
b ∼ h2

b � Λ for a step
drive alternating between −hb and +hb for systems up to
L ∼ 3200 sites (Γ = 0). For large T , we see clear power-law
scaling of the Loschmidt echo with slope −2N as predicted
from boundary CFT. The agreement between the CFT 2N -
point function prediction (dashed lines) and numerical data
is excellent, where we stress that the only fit parameter is
the non-universal offset c1. Note also the universal collapse
of the Loschmidt echo as a function of universal parameter
T/tb ∼ h2

bT . Inset: sketch of the imaginary time picture
where the step drive corresponds to inserting BCC operators.

to the 2N -point function

L(NT ) ∼
T�tb

∣∣∣∣∣
〈

2N−1∏
n=0

φBCC(nT/2)

〉∣∣∣∣∣
2

= cN

(
T

tb

)−γN
,

(3)
whose form is fixed by scale invariance. The universal
exponent γ = 4h+− = 2 is given by the scaling dimen-
sion h+− = 1

2 of the BCC operator φBCC [32, 33]. Other
step drives can be dealt with in a similar fashion; for
example, a step drive from hb = 0 to hb 6= 0 corresponds
to the insertion of a BCC field with scaling dimension
hBCC = 1

16 . We emphasize that eq. (3) holds for arbi-
trary boundary step drives in more general CFTs with
the appropriate choice of BCC operator.

Note that although the Loschmidt echo decays ex-
ponentially with N , consistent with the independent
quenches picture, the fact that the quenches are not
fully independent is encoded in the non-trivial N de-
pendence of the coefficients cN . The ratio cN/(c1)N

is universal and can be computed exactly for this spe-
cific drive, since the BCC operator φBCC corresponds
to a chiral fermionic field ψ in the Ising field theory
with 2N -point correlator given by a Pfaffian: L(NT ) ∼
|〈ψ(0)ψ(T/2)ψ(T ) . . .〉|2 ∼ |Pf(1/(ti − tj))|2 with ti =
0, T/2, T, . . . , (N − 1

2 )T . For step drives in general
CFTs, such universal ratios can be computed within the
Coulomb gas (bosonization) framework [38]. These an-
alytical expressions are in excellent agreement with nu-
merical simulations for Γ = 0 (Fig. 1), where the only
non-universal fit parameter is c1. Since these predictions
rely solely on field theory, they apply equally well to
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FIG. 2. Loschmidt echo for Γ = 0 over a single cycle (N =
1) in the slow regime for various drive geometries showing
renormalized power laws and universal collapse as a function
of T/tb = Th2

b . The dashed lines correspond to the analytic
prediction (5) from boundary CFT and KZ arguments. Inset:
KZ renormalization factor αKZ of the BCC exponents for a
boundary field scaling as hb(t) = hb(

t
T

)r compared to the KZ

prediction αKZ = (1+νbr)
−1 with νb = 2. The dashed line is

a fit of the numerical data for small r giving νb ≈ 2.02±0.08.

the non-integrable case Γ 6= 0; the interactions Γσxi σ
x
i+1

are irrelevant in the RG sense and therefore do not
change the universality class. We confirm this numer-
ically by locating the new critical point for Γ 6= 0 using
exact diagonalization, obtaining the ground state using
standard density matrix renormalization group (DMRG)
techniques [40, 41], and simulating the dynamics of this
driven interacting chain using time-evolving block deci-
mation (TEBD) [42]. We find excellent agreement with
our field-theoretic argument, as shown in the Supple-
mental Material [38].

Slow driving regime: general drives. Consider now a
more general drive such as hb(t > 0) = −hb cos(πt/T )
with hb(t < 0) = −hb. In the large T limit hb(t) crosses
the critical value slowly rather than suddenly, yet the
BCC picture suggests that the field should quickly flow
to infinity. We find, however, that the vanishing (but
finite) crossing speed is strongly relevant, changing the
power law entirely (Fig. 2). To understand this differ-
ence, we use the concept of Kibble-Zurek (KZ) scaling,
which is frequently applied to bulk drives crossing a bulk
quantum critical point [43–46] but has not been studied
for such boundary drives to our knowledge.

Let us imagine that the drive crosses hb = 0 as a
power-law hb(t) = hb| tT |rsgn(t) with r = 1 in the cosine
drive considered above and r = 0 for a quench [47]. The
effective time scale tb(t) ∼ [hb(t)]

−νb now becomes time-
dependent, and we expect the dynamics to be controlled
by an emergent time scale

tKZ ∼ T
rνb

1+rνb h
− νb

1+rνb

b , (4)

given by tKZ ∼ tb(tKZ). Though our system is always

FIG. 3. Fast regime: the Loschmit echo at frequencies ω > Λ
for a step drive oscillating between 0 and hb coincides with
the echo after a single local quench with effective field hb/2
with Floquet Hamiltonian HF (black crosses). This result
also holds when interactions are added with Γ = 0.25 (white
circles, green line). Insets: entanglement entropy difference
Sl(t) − Sl(0) for Γ = 0 as the drive frequency crosses over
from the intermediate to the fast regime.

gapless so that there is no adiabatic limit, it is straight-
forward to show that this dynamical scale emerges di-
rectly from the equations of motion of eq. (2) [48]. It is
natural to expect that the slow driving limit T � tKZ

should still be described by boundary CFT, suggesting
that the Loschmidt echo would scale as (3) with tb re-
placed tKZ. We therefore see that the effect of the slow
driving amounts to renormalizing the dimension hBCC of
the BCC operator by a factor αKZ = 1/(1 + rνb) with
νb = 2 in our case. More generally, for a drive where
hb(t) crosses or touches the critical value n times within
a single cycle, we predict that the universal exponent γ
controlling the exponential decay of the Loschmidt echo
is given by

γ = 2

n∑
i=1

hiBCC

1 + riνb
, (5)

where ri is the power of |hb(t)| ∼ |t − tic|ri near the
critical time tic. For our model, hiBCC = 1

2 if hb(t) crosses
zero and hiBCC = 1

16 if it touches zero without changing
sign [32, 33, 49]. For example, a cosine or triangle drive
oscillating between ±hb has n = 2, r1 = r2 = 1 so that
γ = 2/3, while a sawtooth drive combines slow (r1 = 1)
and fast (r2 = 0) crossings to give γ = 4/3.

These predictions give good agreement with numerics
(Fig. 2) [50]. Furthermore, the only effect of the slow
driving is to renormalize the scaling dimensions of the
BCC operators while keeping the structure of the 2N -
point function unchanged. In particular, we find that
the universal numbers cN/(c1)N in eq. (3) are still given
by the boundary CFT predictions for a step drive [38].

Fast driving regime. We now consider the high-
frequency regime t−1

b � Λ � ω. This is näıvely out-
side the regime where field theory results should ap-
ply, but we can take advantage of standard Floquet
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machinery to write a Floquet-Magnus high-frequency
expansion for the Floquet Hamiltonian HF defined by

U(T ) = T e−i
∫ T
0
dtH(t) = e−iTHF [51]. For example,

HF = 1
2 (H0 + H1) − i

4ω [H0, H1] + O(ω−2) for a step
drive. While higher order terms in this expansion are
suppressed by powers of ω−1 as for any high-frequency
Floquet system, we note here that the Floquet Hamil-
tonian HF itself corresponds to a CFT subject to an ef-

fective boundary field hb = (1/T )
∫ T

0
hb(t)dt with higher

order terms in the high frequency expansion being RG
irrelevant. This is most easily seen using the field theory
Hamiltonian (2) where the small parameter controlling
the expansion is v/ω � 1 with v ∼ Λ = 2J . While the
first boundary term has scaling dimension ∆ = 1/2 and
corresponds to the averaged field hb, dimensional anal-
ysis immediately implies that terms of order ω−n have
scaling dimension of at least n+1/2 due to terms such as
∂nη(0) and are thus irrelevant for n > 0 [38]. Therefore
at late times, the system behaves as though subject to
a single local quantum quench with effective boundary
field hb (Fig. 3), a problem whose universal dynamics
has been studied extensively [52, 53]. We remark that
though RG techniques may be in general ill-defined in
a Floquet system which, for instance, lacks a notion of
ground state, in this high-frequency limit the Floquet
evolution is well-controlled by an effective static Hamil-
tonian. Since our initial state is a conformally invariant
ground state and the effective Hamiltonian implements
a local quench, the notion of RG flow is well-defined [52]
and provides a powerful tool of analysis. Additionally,
for the non-interacting (free fermions) case with Γ = 0 in
eq. (1), one may prove that the high-frequency expansion
is convergent for ω >∼Λ by bounding the spectral width of
the single-particle Hamiltonian [38]. More generally, this
effective single quench picture will survive even in the
presence of integrability-breaking interactions controlled
by Γ up to exponentially long time scales τth ∼ eCω/Λ

[23–26]. We simulated the dynamics of this interacting
chain subject to the same drive using TEBD and found
excellent agreement with the single effective quench pic-
ture even at moderate frequencies (Fig. 3).

Crossover regime. Finally, we discuss the intermediate
crossover regime t−1

b ∼ ω � Λ. We focus on a free-
to-fixed step drive from hb = 0 to hb 6= 0 with Γ =
0 for simplicity. In this regime, we expect the system
to absorb energy (“heat”) via resonant processes within
the single-particle bandwidth. This leads to exponential
decay of the Loschmidt echo,

L(NT ) ∼
t−1
b ,ω�Λ

e−N/N?(ωtb), (6)

with N?(ωtb) a universal function (Fig. 4a). For weak
drive (ωtb � 1), resonant heating occurs with a rate
τ−1 ∼ h2

b/J given by Fermi’s golden rule, so that
N? ∼ τ/T ∼ ωtb. For strong drive (ωtb � 1), we recover
the boundary CFT prediction N? ∼ −1/(γ logωtb). We
also find that entanglement entropy of boundary inter-
vals of size `, relative to the ground state entropy, sat-
urates to a volume law behavior S` ∼ ` at long times

FIG. 4. Intermediate regime t−1
b ∼ ω � Λ for a step drive

from hb = 0 to hb 6= 0. (a) Left panel: universal scaling
function N?(ωtb) characterizing the exponential decay of the

Loschmidt echo L(NT ) ∼ e−N/N? , with the dashed line show-
ing the linear behavior expected from Fermi’s golden rule.
Right panel: volume-law scaling of the entanglement entropy
in the long-time limit for ωtb = 10.5 � 1. An overbar de-
notes the value of the late-time plateau. (b) Sketch of the
three universal driving regimes analyzed in this Letter.

in the regime ωtb � 1, consistent with heating [54]. At
low frequencies, the entropy simply oscillates between
ground state values [55] though it may become extensive
at much later times. We leave a detailed analysis of the
role of interactions in this intermediate regime for future
work.

Discussion. We have investigated CFTs subject to
a Floquet boundary drive. Despite the näıve expecta-
tion that such gapless systems should absorb energy and
simply heat up, we have identified three distinct regimes
summarized in Fig. 4b in which the system shows univer-
sal features that can be understood using tools of field
theory and scaling theory. We expect our main conclu-
sions to apply to a broad class of systems, and it will
be especially interesting to investigate the consequences
of our results for the physics of driven quantum dots
and the non-equilibrium signatures of topological edge
modes [10]. In general, our results represent an ana-
lytically tractable model of a driven gapless system, an
active area of research increasingly relevant to experi-
ments.
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