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We investigate graphs that can be disconnected into small components by removing a vanishingly
small fraction of their vertices. We show that when a controllable quantum network is described by
such a graph and the gaps in eigenfrequencies and in transition frequencies are bounded exponentially
in the number of vertices, the network is efficiently controllable, in the sense that universal quantum
computation can be performed using a control sequence polynomial in the size of the network
while controlling a vanishingly small fraction of subsystems. We show that networks corresponding
to finite-dimensional lattices are efficently controllable, and explore generalizations to percolation
clusters and random graphs. We show that the classical computational complexity of estimating
the ground state of Hamiltonians described by controllable graphs is polynomial in the number of
subsystems/qubits.

PACS numbers: 02.30.Yy, 03.65.Aa, 03.65.-w, 03.67.-a, 03.67.Lx, 07.05.Dz

Controlling large quantum networks and performing
universal quantum computation are two important and
related problems in quantum information processing. A
common goal is to perform control and computation effi-
ciently, by accessing a minimum number of directly con-
trolled parts. Quantum networks were introduced in [1].
In [2] it was shown that almost any quantum network
with single probe is controllable. If controls can be ap-
plied to quantum degrees of freedom in a pairwise fash-
ion, then the control is computationally universal [3].
The connectivity of the graph of interactions plays an im-
portant role in controllability and computation [4]. Un-
der mild assumptions about network topology and the
algebra of controls, [5] gave sufficient conditions for a
network to be controlled using a small number of con-
trol qubits, without regard for the efficiency of the con-
trol sequence. See [6] for a similar study of classical
linear systems. In suitable systems, quantum compu-
tation is possible with only a few control qubits [7, 8].
As suggested in these papers, spin chains with specific
Hamiltonians can give controllability as well as the abil-
ity to enact efficient universal quantum computation on
the chain. These results raise the question of when it is
possible to perform universal quantum control and quan-
tum computation efficiently on a general quantum net-
work. This paper shows in a general setting that it is
possible to perform universal quantum control and com-
putation in time polynomial in network size on a wide
variety of controllable quantum networks with Hamilto-
nians whose gaps in eigenfrequencies and in transition
frequencies are bounded exponentially in the number of
vertices, while acting on only a vanishingly small frac-
tion of their nodes. This naturally leads one to define
an interesting class of graphs, which we call efficiently

controllable graphs, which admit efficient control by act-
ing on a vanishingly small fraction of controlled nodes.

Existence, construction and analysis of this new class of
graphs pose an intriguing problem in graph theory. In
this work, we construct several examples of such families
of graphs and show that the ground states of Hamiltoni-
ans of systems whose interactions are determined by such
graphs can be approximated efficiently.

Consider a quantum system consisting of subsystems
interacting via local Hamiltonians. The subsystems can
be represented as vertices of an interaction (hyper)graph
where (hyper)edges exist only between vertices corre-
sponding to coupled subsystems. For simplicity of expo-
sition, we will restrict our attention to pairwise Hamil-
tonians and interaction graphs. However, all our results
apply to general local Hamiltonians and interaction hy-
pergraphs. Without loss of generality, here the quantum
systems are restricted to networks of qubits.

Since implementation becomes more complex as the
number of controlled spins grows, a scalable implemen-
tation needs to choose the smallest number of controlled
spins possible while still preserving polynomial efficiency
of quantum computation. The primary purpose of this
article is to show that there exist families of interaction
graphs such that the quantum computational efficiency
scales polynomially with the number of vertices and the
fraction of controlled qubits approaches zero as the num-
ber of nodes in the graph goes to infinity given assump-
tions on the spectrum of the Hamiltonian and controlla-
bility. That is, there are scalable and efficient quantum
computer architecture schemes that make use of vanish-
ing fraction of controlled qubits. Lattices and uniform
tilings are examples of such families. Expanders and com-
plete graphs are not likely to be such graphs. Not every
family of graphs admits such schemes, therefore we define
a new family, which we call efficently controllable graphs.
An efficiently controllable graph is a graph that can be
divided into components of size poly(log(n)) by remov-
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ing a vanishingly small fraction of vertices where n is the
number of vertices. Assuming controllability conditions,
we prove that on a quantum network described by such a
graph one can perform universal quantum computation
efficiently by controlling a vanishingly small fraction of
vertices in the limit that the size of the graph goes to
infinity
In a connected network architecture of n spins satisfy-

ing certain assumptions on the drift and control Hamil-
tonians, enacting an arbitrary unitary operation within
a constant error ǫ requires s(n) = O(2nxpoly(1/ǫ)) ele-
mentary operations for some x as we show now. Con-
sider a connected network of n spins. To make the ar-
gument simple, restrict to the Hamiltonian with a single
control term H(t) = H0 + Hcγ(t) where −iH0,−iHc ∈
su(d = 2n) are bounded. We assume that the pair
(H0, Hc) is controllable. See for example [4, 5, 9, 10]
for sufficient conditions for local controllability. The
control problem is to find γ(t) to drive an initial uni-
tary, which is the identity, to the ǫ neighborhood of a
final unitary. The Hamiltonian defines a flow in the
set of unitaries as U̇(t) = −i(H0 + Hcγ(t))U(t) where
U(t) ∈ SU(d). Assume that H0 =

∑

k EkPk is non-
degenerate to accuracy 1/dr where Pk = |k〉〈k| is the
projector onto the eigenvector |k〉 of H0 with eigenvalue
Ek. Assume also that |∆jk| = |Ej − Ek| > 1/dr are dis-
tinct and PkHcPm 6= 0 for all k, m (this condition can
be relaxed: see [11]), and ||Hc|| = O(1) where ||U || =
supy∈Cd,y†y=1 ||Uy|| is the operator norm. It is an inter-
esting feature that there are few if any non-trivial many-
body systems whose level statistics are proven to obey
the above conditions. However, for example extensive
numerical evidence suggests that one dimensional spin
chains with randomly constructed Hamiltonians [12, 13]
exhibit Wigner-Dyson like statistics and therefore energy
level repulsion [14], implying that the probability of hav-
ing exponentially small level spacing or transition level
spacing is exponentially small in d. Drive the system
with control with amplitude A, resonant frequency ∆jm

and phase φ, so that the Hamiltonian takes the form
H(t) = H0+A cos(∆jmt+φ)Hc. Now go the interaction
picture by defining Ui(t) via U(t) = e−itH0Ui(t). Then

U̇i(t) = −ieitH0A cos(∆jmt+ φ)Hce
−itH0Ui(t).

The approximate solution of this equation is given by
the Magnus expansion [15] as

U0(T ) = exp(−iΩ(T ))

= e−i
∫

T

0
dt exp(itH0)A cos(∆jmt+φ)Hc exp(−itH0)

with error ||U0(T ) − Ui(T )|| = O(|A|2T 2||Hc||2) where
|A|T ||Hc|| < π for the convergence of the series. We
write Ω(T ) = Ω1(T ) + Ω2(T ) as the sum of the resonant
term and the off-resonant term. The resonant term is
given by

Ω1(T ) =
A

2
T (e−iφPjHcPm + eiφPmHcPj)

and ||Ω2(T )|| = O(|A|d2+r ||Hc||). The error in neglecting
Ω2(T ) is given by [16]

||U0(T )− e−iΩ1(T )||
≤ ||e−i(Ω1(T )+Ω2(T )) − e−iΩ1(T )e−iΩ2(T )||
+ ||e−iΩ1(T )e−iΩ2(T ) − e−iΩ1(T )||

= O(||Ω1(T )||||Ω2(T )||+ ||Ω2(T )||)
= O(|A|2Td2+r||Hc||2 + |A|d2+r||Hc||).

Now bound the error between Ui(T ) and e−iΩ1(T ) using
the triangle inequality as

||Ui(T )− e−iΩ1(T )||
≤ ||U0(t)− e−iΩ1(T )||+ ||Ui(t)− U0(t)||
= O(|A|2Td2+r||Hc||2

+ |A|d2+r||Hc||+ |A|2T 2||Hc||2).

Choose A and T such that

|A|2T 2||Hc||2 > |A|d2+r||Hc|| > |A|2Td2+r||Hc||2

implying 1 > |A|T ||Hc|| ensuring the convergence of the
Magnus series, d2+r < |A|T 2||Hc|| and T > d2+r. Such
a choice is possible by making A sufficiently small, hence
weak driving. Then

||Ui(T )− e−iΩ1(T )|| = O(|A|2T 2||Hc||2).

Note that Ω1(T ) is a single qubit Hamiltonian acting
on the subspace spanned by |j〉 and |m〉. By adjusting φ
one can implement

Vi = e−iA
2
T |〈j|Hc|k〉|σ

where σ = ±σx,±σy. Now any SU(2) gate U2 can
be decomposed in the form U2 = e−ic1σxe−ic2σye−ic3σx

for some c1, c2, c3. This is the Cartan decomposition of
SU(2), see for example [17]. Therefore it takes O( 3

|A|T )

gates to generate any U2 with error O( 3
|A|T |A|2T 2) =

O(3|A|T ) since the errors accumulate linearly[18]. An
arbitrary unitary U ∈ SU(d) can be implemented by at
most d(d−1)/2 = O(d2) SU(2) rotations [16, 18]. The to-
tal error is then ǫ = O(3|A|Td2). Therefore it requires a

total number of O( 3d2

|A|T ) = O(9d4 1
ǫ ) operations to imple-

ment any unitary with accuracy ǫ. The gate complexity
can be improved to poly(d)poly log(1/ǫ) by generating
SU(2) gates via the Solovay-Kitaev algorithm[19]. The
ability to implement any unitary in the interaction pic-
ture implies the ability to implement any unitary noting
that U(T ′) = e−iT ′H0Ui(T

′).
Note that since in our setting we have a drift term

whose inverse cannot be reached directly we could not
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invoke the discrete Solovay-Kitaev bound [18, 19] or
bounds relating optimal control costs to gate complex-
ity [20, 21].

Thus the efficiency of universal quantum computation
scales exponentially with the total number of spins. Are
there architectures enabling control complexity to scale
polynomially, or sub-exponentially, yet the fraction of
controlled qubits vanishes with n? One such architec-
ture is to decompose the graph into N connected blocks,
bj , each containing L qubits with boundaries of size B be-
tween them where L >> B for large n. The boundaries
are promoted to be controls. And we require that for each
block one can apply an additional control term, which to-
gether with the Hamiltonian of the block satisfy the as-
sumptions of the complexity result proved above. Thus
neighboring blocks are separated by a number of con-
trolled qubits. The ability to perform arbitrary transfor-
mations on control qubits make it possible to completely
decouple the blocks [22]. Decoupling every block but two,
one can perform quantum computation on two adjacent
blocks with efficiency s(2L). In an arbitrary network,
two blocks are at most N blocks apart from each other.
To transfer quantum information between two arbitrary
blocks or equivalently to apply any quantum operation
to arbitrary two blocks one applies the following proce-
dure. Let bp(1)bp(2)...bp(N) be a path of blocks between
maximally separated bp(1) and bp(N) where p(·) is some
permutation of N blocks. Quantum information is me-
diated through the network by first decoupling the adja-
cent blocks bp(1) and bp(2) from the rest of network and
enacting a quantum transformation on it. Then bp(2)
and bp(3) are decoupled from the rest and quantum infor-
mation is transferred between these blocks. Continuing
this way, quantum information can be mediated between
any two blocks at most using O(N) pairwise decoupling
operations. The total gate complexity of applying any
quantum operation between any two blocks is at most
O(Ns(2L)) = O(N22xL/ǫ)). How can the required oper-
ations be made to depend sub-exponentially to n? Take
a family of spin networks, G(n), indexed by the total
number of qubits. If each network in the family admits a
decomposition into N blocks of size L = logN/2x while
n = N logN/2x, the complexity can be made polynomial
as O(Ns(2L)) = O(N2/ǫ)) = O(n2/ǫ). If also the frac-
tion of controls, c/n can be made to vanish as n grows
large, where c is the number of controls, one has a scalable
quantum computer architecture with a small fraction of
controls whose gate complexity is sub-exponential.

Not every family of graphs, G(n), admits a decomposi-
tion into blocks such that the fraction of controls vanishes
while the number of elementary operations needed scales
polynomially with the number of vertices. To distinguish
between efficiently controllable graphs and and graphs
that are not efficiently controllable, we now present a
formal definition of the efficently controllable family of
graphs.

Definition: Efficiently controllable family. A fam-
ily of graphs, G(n), indexed by the number of ver-
tices, n, is called an efficiently controllable family if
for every n there exists a decomposition into con-

nected sub-graphs, blocks, G(n) = ∪N(n)
K=1Gk such that

limn→∞

∑

1=j<k=N |Gj ∩ Gk|/n → 0 where |Gj ∩ Gk|
is the cardinality of Gj ∩ Gk, the controls between two
blocks; in addition, we require that control complexity
D(n)s(L(n)) = O(poly(n), poly(1/ǫ)) where L(n) is the
maximum size of blocks and D(n) is the diameter of the
graph formed by the blocks. Note that the definition can
be easily generalized to control of classical networks and
other complexity measures.

We give a simple example of a scalable network archi-
tecture. Quantum information can be transferred from
one end to the other of a one dimensional chain of n
qubits using a fraction of them as controls. This fraction
can be chosen so that it vanishes as n goes to infinity,
and the number of elementary operations required scales
polynomially with n. Assume N blocks of qubits of size
L − 1. Between neighboring blocks lies a single control
qubit. Then the fraction of controls is c/n = 1/L. We
choose L = logN/2x so that c/n vanishes as n goes to
infinity. In order to enact arbitrary unitary operations
between the blocks lying at the right and left ends, one
first decouples block 1 and 2 from the rest of the chain
and transfers quantum information coherently from 1 to
2, then decouples block 2 and 3, then 3 and 4, etc. Thus
it takes O(N) steps to mediate quantum information be-
tween the blocks that lie at the ends. The number of
elementary operations required to perform arbitrary op-
erations with accuracy ǫ between adjacent blocks is of
the order s(2L − 1). Thus the total number of elemen-
tary operations needed to couple the blocks at the ends
is O(Ns(2L − 1)). With the choice we made for L, the
quantum gate complexity to enact any desired quantum
logic operation between any two blocks is at most O(n2).

The previous scheme can be easily generalized to a
family of d-dimensional cubic lattices. We takeNd blocks
of size Ld where total number of qubits is n = NdLd.
Between two adjacent blocks lies a d − 1 dimensional
layer of control qubits. The fraction of controls is again
c/n = 1/L. Quantum information can be transferred
between blocks lying in the opposite diagonal ends by
O(dN) pairwise operations on blocks lying in the inte-
rior. The number of elementary operations required to
enact quantum logic between adjacent blocks with ac-
curacy ǫ is given by s((L − 1)d−1(2L − 1)). Choosing

L = (
(d− 1

2
)

2x logN)
1

d the total number of elementary quan-
tum operations is given by O(dNs(2Ld)) = O(dn2/ǫ))
while c/n is vanishingly small in the limit of large n.
Now, the generalization to lattices or uniform tilings is
evident. In the presence of symmetries [23] (existence
of a subalgebra of the Lie algebra commuting with the
drift and all the control terms) complete controllability is
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lost. However one can generically break symmetries by
perturbations in the coupling Hamiltonian or controls.
Therefore assuming controllability, efficient controllabil-
ity follows.
Note that the construction of efficiently controllable

families given above does not require the dimension d
to be an integer. Fractals such as the Sierpinski gasket
automatically generate efficiently controllable families.
An efficient way to generate efficiently controllable

families is via site percolation [24]. Consider an infinite
lattice of spins where spins sitting in adjacent lattice sites
interact with probability p and the interaction probabil-
ities for each edge connecting lattice sites are indepen-
dent. When p is just above the percolation threshold pc,
the graph is connected with unit probability, while the
structure of the cluster formed is a fractal [25]. At this
point, removing a vanishingly small fraction of the spins
at random separates the graph into disconnected pieces:
that is, those removed spins form the interfaces between
those pieces of the graph. The largest size of those dis-
connected pieces can be estimated as follows. Start at
p ≈ pc and remove a fraction δ of the spins. A group
of N previously connected spins will remain connected
if, by a statistical fluctuation, the fraction of connections
within that set remains above pc. Otherwise, the group
will become disconnected for large N . The average fluc-
tuation in the number of connections in the group goes
as ±

√

pc(1 − pc)N . The probability that the group re-

mains connected goes as e−δ2N/pc(1−pc). Accordingly, if
one removes a fraction δ of the spins, the largest con-
nected group size goes as O(δ−2). This gives the same
scaling for the fraction of control spins required as that
for a two-dimensional lattice, where a group of size N has
a boundary of size O(

√
N). But that family is efficiently

controllable, as shown above. Consequently a graph
just above the percolation threshold realizes an efficiently
controllable family: universal quantum computation can
be effected by controlling a vanishingly small fraction of
the spins. The same argument holds for other families
of graphs with percolation thresholds, e.g., Erdos-Renyi
graphs [26].
The site percolation construction above can be applied

to scale-free networks characterized by the degree distri-
bution P (k) ∼ k−α where P (k) is the probability for a
site to be connected to k other sites. For random removal
of sites, the percolation threshold is either 0 or finite [27].
However for α = 2, the removal of high degree nodes
makes the percolation threshold approach 1 and remov-
ing a fraction ∼ 1/N of nodes is sufficient to break down
the network [28] into clusters of size logN/loglogN where
N is the total number of sites[29]. Therefore scale-free
networks with α = 2 can be made efficiently controllable.
Take high degree nodes as controls for decoupling, and
take one node for each decoupled cluster as the control
for enacting quantum gates. The total number of controls
required to perform quantum computation efficiently is

then a vanishing fraction of total number of sites.

The purely graph-theoretic definition of an efficiently
controllable family has applications outside of quantum
control theory. Consider for example the problem of ap-
proximating the ground state energy of a system, classi-
cal or quantum, whose interactions correspond to an effi-
ciently controllable graph. The construction of efficiently
controllable graphs shows that the problem of finding a
state whose energy is within a multiplicative factor ǫ of
the actual ground state energy is polynomial in the size of
the system. More precisely, consider a quantum Hamil-
tonian described by the graph G = (V,E), where each
vertex corresponds to a variable and each edge to a pair-
wise interaction. We want to find a state whose energy is
within a factor ǫ of the actual ground state. Let n be the
number of variables, and N the number of clusters, each
of size logN , so that n = N logN . Disconnect and de-
couple the clusters of size logN by removing the control
qubits, the boundaries between the clusters, to get the
Hamiltonian H̃ =

∑

k HCk
whereHCk

is the Hamiltonian
acting on the cluster Ck. The error introduced in calcu-
lating the ground state energy is at most ǫn where ǫ is
the fraction of controls, i.e. the ground state energy of H
is ǫn close to that of H̃. But the ground state of H̃ is the
tensor product of the ground states of {HCk

}k. By stan-
dard matrix diagonalization techniques the ground state
energy of HCk

can be found in O(poly N) = O(poly n)
steps. There are N clusters, so it still takes only poly-
nomial steps to calculate the ground state energy of H̃
and therefore to approximate that of H within accuracy
ǫN which vanishes as n becomes large. Note that our
construction is a polynomial time approximation scheme
for finding the ground state energy of a 2-local Hamilto-
nian [30] using clustered product states. Although our
construction is in the spirit of product state approxima-
tions to ground states [31, 32], we are approximating with
multiplicative error instead of additive error.

This paper investigated the requirements for being able
to control extended systems efficiently. Quantum sys-
tems that can be controlled in time polynomial in the
number of coupled variables in the system Hamiltonian,
by only operating on a vanishingly small fraction of those
variables, correspond to efficiently controllable families of
interaction graphs. Such graphs can be divided into clus-
ters of size O(poly(log n)) while removing a fraction ǫ of
the n vertices, with ǫ → 0 in the limit n → ∞. Canon-
ical graph families such as regular lattices are readily
shown to be also efficiently controllable. The general cri-
terion for when families of graphs admit polynomially
efficient universal quantum computation yet using van-
ishing fraction of fully controlled qubits is an open ques-
tion. Other open questions include the computational
complexity of construction of efficiently controllable fami-
lies and whether existing heuristics for graph partitioning
problems can be exploited to find approximate solutions.
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