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Smectic liquid crystals are charcterized by layers that have a preferred uniform spacing and van-
ishing curvature in their ground state. Dislocations in the smectics play an important role in phase
nucleation, layer reorientation, and dynamics. Typically modeled as possessing one line singularity,
the layer structure of a dislocation leads to a diverging compression strain as one approaches the
defect center, suggesting a large, elastically determined melted core. However, it has been observed
that for large charge dislocations, the defect breaks up into two disclinations [C. E. Williams, Philos.
Mag. 32, 313 (1975)]. Here we investigate the topology of the composite core. Because the smec-
tic cannot twist, transformations between different disclination geometries are highly constrained.
We demonstrate the geometric route between them and show that despite enjoying precisely the
topological rules of the three-dimensional nematic, the additional structure of line disclinations in
three-dimensional smectics localizes transitions to higher-order point singularities.

Dislocations are, by their nature, not only topologi-
cal but geometrical: by definition, they only occur in
systems with broken translational order and therefore
they must induce strain in the crystal or liquid crystal
that host them [1–3]. These strains can grow quite large
and often require a cutoff at the core to keep the en-
ergy finite. In exchange, the core melts into a higher-
symmetry phase bringing with it the higher energy of
the uncondensed condensate. Screw dislocations are es-
pecially troublesome because of a geometric consequence
of their topology. Namely, the helicoidal layer structure
that makes up the screw disclocation is not measured at
its core [4], that is, all the layers come together on the
centerline. It follows that the compression energy must
diverge there [5, 6]. The symmetry of the smectic phase
allows the core regions of a dislocation to be replaced by
disclination pairs, for both edge and screw [7–10] disloca-
tions. Recall that line defects in nematics are character-
ized only by a Z2 = π1(RP 2) charge; however, when the
director lies in the plane perpendicular to the defect line
we can assign a geometric charge In this paper we dis-
cuss this phenomenon, and elucidate the topology that
allows an edge dislocation can become a screw disloca-
tion through the conversion of a disclination with the a
+ 1

2 geometry transforms into a − 1
2 geometry.

Before considering composite cores, we first compare
the energetic situation in smectics with the theory of su-
perconductors. Though the harmonic theory of smectics
matches the London theory of superconductors [11, 12]
and the Landau theories are strikingly similar [13], the
nonlinear elasticity of the smectic, required by rotational
invariance [14] captures both the geometry and the di-
verging energy density of a screw defect. We locate the
smectic layers as level sets of a three-dimensional phase
field φ(x). This is locally the phase of a complex scalar
order parameter, ψ = 〈exp{iqφ}〉 where 2π/q is the equi-

FIG. 1: (Left) A composite smectic screw dislocation. The
inner (red) core has zero compression, and costs only a finite
bending energy. The outer (cyan) shell has zero mean curva-
ture, and costs only a finite compression energy. The struc-
ture, with Burgers scalar b = 10 (in units of the layer spacing),
is completed by the two helical (green) + 1

2
line disclinations

at b half-layers (density minima) away from each other. The
radius of the core is −b = b/(2π). (Right) A composite edge
dislocation. The structure is composed of a + 1

2
/− 1

2
disclina-

tion pair, the number of half-layers between them again sets
b = 10. Here the mean curvature does not vanish outside
the core, nonetheless disclinations are still found at curvature
singularities. Insets: The standard dislocation structures of
equivalent Burgers scalars, with diverging core energy.

librium smectic spacing. The elastic free energy is

F =
B

8

∫
d3x
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(∇φ)

2 − 1
]2

+ 16λ2H2

}
, (1)

where B is the bulk modulus, λ is the bend penetration
depth, H = 1

2∇· (∇φ/|∇φ|) is the mean curvature of the
level sets, and we have set q = 1 for simplicity.

There is a compact three-dimensional set of ground
states, φ = n ·x + φ0 parameterized by a unit vector
n ∈ S2 and a scalar global phase φ0 ∈ S1. Note that the
ground state manifold is further reduced by the discrete
nematic symmetry n → −n, to form a twisted circle
bundle over RP 2. Typically, one expands around the
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ground state φ = φ − u in the Eulerian coördinate u to
find the harmonic theory [11]

Fharm =
B

2

∫
d3x

{
(n0 ·∇u)

2
+ λ2

(
∇2u

)2}
. (2)

It is remarkable that a screw dislocation with Burgers
scalar [15] b, φscrew = z − b

2π tan−1(y/x), an extremal
of both the full and harmonic free energy functionals,
has vanishing energy density in the harmonic theory but
a diverging energy density in the rotationally-invariant
theory scaling as Bb4/r4 with r2 = x2 + y2. The linear
elasticity theory is a poor starting point for an energetic
description. For edge dislocations, the situation is almost
opposite: the linear and nonlinear theories give different
layer structures but the same energy [16].

However, symmetry offers a way out: the ∇φ→ −∇φ
symmetry of the smectic phase means that φ lives in the
quotient space S1/Z2

∼= {R : φ ∼ φ+ 2π, φ ∼ −φ} [3]. It
is important to note that this space is not RP 1 where
φ and φ + π are identified and which is not simply con-
nected – the action of the smectic symmetry on φ is not
free, it has two fixed points: 0 and π – the layers and the
“half layers”. The level sets that correspond to layers
or half-layers must be at these fixed points for a single
valued density field ρ ∝ cosφ, so that disclinations must
lie on density minima or maxima. This condition breaks
the continuous symmetry, φ → φ + constant, and gen-
erates a Peierls-Nabarro barrier to dislocation glide [17].
This extra structure allows dislocation cores to split into
disclinations: an initial phase singularity of 2π is equiva-
lent to a phase change from 0 to π followed by the reverse
change from π to 0 since the sign of ∇φ changes at the
fixed points. This process removes the phase singularity
but preserves the phase winding that signifies the dislo-
cation.

This fact allows the system to replace the high en-
ergy cores of standard dislocations. Such composite
dislocations can be described in terms of an almost-
equally-spaced structure as described by Kléman and co-
workers [7, 8]. The topology of a screw dislocation re-
quires the solution φscrew at large distances, a solution
with vanishing mean curvature H, however one can re-
place the divergent-compression core with equally spaced
layers (Fig. 1). Such a core is built with layers specified
as the normal evolution of a central helicoid (discussed
in detail below). These layers are equally spaced, but are
not minimal surfaces, and there are two curvature singu-
larities created at a radius equal to the reduced Burgers
scalar, −b = b/2π, which form a double helix. These sin-
gularities are the location of the disclinations, and indeed
these double helices were observed in screw dislocations
with large (giant) Burgers scalar [7, 10]. Outside the
core, we attach helicoids to the helices which bound the
developed layers. Each of these helices serves as seed for
the helicoidal layer outside the core. We will return to
details of this construction in the following. The Burgers

scalar of such a split dislocation is again determined by
the number of layers between the disclinations (Fig. 1).

This splitting into disclination pairs reveals an essen-
tial difference between edge and screw dislocations that
is the central issue of this paper. Edge dislocations split
into + 1

2/ − 1
2 disclination pairs [1, 18], while screw dis-

locations break into a pair of + 1
2 disclinations – how is

the topological charge of the disclinations preserved? In
Fig. 2 we illustrate a b = 4 composite screw bending
over to become a composite edge dislocation. Below the
transition layers, the bottom layer structure indicates the
topology of the composite screw. The transition to the
edge dislocation at the top of Fig. 2 preserves this sep-
aration of disclinations. However, because the edge dis-
location is made of a + 1

2/− 1
2 disclination pair and the

screw disclination is made of two + 1
2 disclinations, the

transition requires the conversion of a +1
2 disclination

into a − 1
2 disclination. As we show in Fig. 3, it is pos-

sible to turn a + 1
2 disclination into a − 1

2 . While this
geometry reflects the more familiar fact that in a three-
dimensional nematic there is only one kind of line defect
locally (π1(RP 2) = Z2), the existence of smectic layers
implies additional structure.

The layer normal of a surface, n, must satisfy the
Frobenius integrability condition n·(∇×n) = 0 so there
can be no twist in a smectic. In addition, smectics
must satisfy a geometric ‘measured’ condition that fol-
lows from a finite layer thickness. As we show below,
these restrictions imply that the transition from +1

2 to
− 1

2 must occur at an identifiable point, a ‘monopole’ sit-
ting on the disclination line. At a generic point p along
a smectic disclination one can associate an integer that
counts the number of layers, mp attached to the disclina-
tion at that point. This is equal to 1 for a + 1

2 disclination,
and 3 for a − 1

2 disclination. Generally, the local winding
number of the disclination at p is given by 1−mp/2. Be-
cause mp ≥ 0 by construction, a smectic disclination can
have a maximum geometric winding of +1, a consequence
of Poénaru’s result concerning the measured condition of
smectics [4].

Since mp is an integer valued function along the discli-
nation line, it can only change discretely at specific
points. These are the monopoles, and are unique to smec-
tics. No such structure can be defined for a nematic liquid
crystals, where a +q profile may be smoothly deformed to
a −q profile. As there is no homotopy between windings
of ±q with n lying in a plane, such a homotopy must fully
explore the groundstate manifold, RP 2, and evolve into
the third dimension. While the smectic configuration is
a valid nematic texture, in a nematic such a configura-
tion is not topologically protected from smearing to a
smooth transition with twist (consider the standard ± 1

2
transition through a twist disclination). This twist pro-
hibits the definition of a phase field and consequently the
integer-valued invariant mp is not defined in a nematic.

So how does the ± 1
2 transition occur in a smectic? In
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the top row of Fig. 3 we consider such a transition made
by cutting open a toric focal conic domain. In this case
the natural π/2 turn abets the transition from screw to
edge but also demonstrates a key feature of the transi-
tion: it occurs at a point. Disclination lines in a smectic
are where smectic layers intersect along a line (or end
along a line as in the +1

2 and +1 geometries) so, in order
to make a transition, a new layer must emerge from the
line. A whole layer adds two leafs and so the geometric
winding would change by −1 or, conversely, increase by
1 on removal. Note that a half-layer (density minimum)
joining would amount to two disclination lines joining –
a different beast altogether. Thus, in order to make the
geometric transitions it is necessary to go through a more
singular point defect, a critical point of the smectic layers
that is also a point defect or monopole. This minimalis-
tic layer description in terms of whole sheets and sheets
ending on disclination lines is equivalent to a full phase
field model, as we show rigorously elsewhere [19].

More generally, it is not necessary to use a focal conic
domain segment to achieve the transition, as illustrated
in the bottom images of Fig. 3. In order to convert a
charge-m disclination to a charge-m′ one, 2(m−m′) lay-
ers need to be added in the cross-section perpendicular
to the disclination line. Generically, disclination lines do
not intersect each other, and so the layers must appear in
pairs by forming a three-dimensional half-conical struc-
ture. It follows that m − m′ is necessarily integer, and
nematic order can be maintained. For every integer there
are monopole structures carrying that charge. The com-
plete set of rules for the topologically allowed moves is
the subject of other work [19].

With this discussion in mind, we return to the transi-
tion from a screw to an edge dislocation, it is fortunate
that the transition can be achieved with a π/2 turn: an
edge dislocation (when the defect line is perpendicular
to the displacement) and a screw dislocation (when the
defect line is parallel to the displacement) meet as in
Fig. 2. We see that one disclination in the screw keeps
its charge and becomes the companion for the newly cre-
ated − 1

2 . The remaining +1
2 charge pairs up with a + 1

2
generated through a pinch or pincement of the smectic as
illustrated in the topmost layer in Fig. 2. The topmost
full layer merges with the disclination and, at that point
the pincement is created.

Experimental observations [10] demonstrate the exis-
tence of composite screw dislocations. We determine the
energetic favorability of the split-core screw dislocation
expanding upon the geometric description by Kléman
and coworkers [7]. The topology of a screw dislocation
requires φscrew at large distances, a solution with van-
ishing mean curvature H. We replace the core with
equally-spaced layers (Fig. 1) built with level sets of φ
specified as the normal evolution of a central helicoid by
a distance `: X`(r, θ) = [r cos θ, r sin θ, −b θ] + `N, where
−b ≡ b/(2π) and N is the normal of the central helicoid,

FIG. 2: A composite screw dislocation becoming a composite
edge dislocation (with Burgers scalar 4 times the layer spac-
ing). Note that the a pincement is made on the top layer, a
− 1

2
/+ 1

2
disclination pair with no net dislocation charge [1, 3]

(red triangle and red circle, respectively). The “half layer” is
indicated as a dotted line to show the the pinch. The red and
blue circles are the + 1

2
disclinations.

N(r, θ) = γ [sin θ,− cos θ, r/−b], with γ = [1 + (r/−b)2]−
1
2

normalizing N. On the central helicoid ` = 0, the mean
curvature vanishes identically and the Gaussian curva-
ture is K(r, θ) = −γ4/−b2 so that the two principal cur-
vatures are κ± = ±γ2/−b. The largest value of |κ| = 1/−b
and measures the inverse distance to the first curvature
singularity generated by the normal evolution of the he-
licoid, −b. Except for the central helicoid, the core layers
are not minimal surfaces, i.e. H 6= 0, however the com-
pression in the entire core vanishes by construction.

It is amusing to note that this dichotomy of vanish-
ing compression in the core and vanishing curvature in
the exterior is reminiscent of the structure of e.g. an
Abrikosov flux line [20]: at large distances we have a su-
perconducting phase with vanishing magnetic field, while
in the core we have normal metal with penetrating flux.
In the flux line case this is a balance between two linear
terms in the London theory. In our case, the smectic free
energy is nonlinear in φ but harmonic in the compression
strain uzz = (∇φ)2 − 1 and the mean curvature H. This
same unexpected balance between nonlinear strains was
first pointed out by Brener and Marchenko in smectic
edge dislocations [21].

It is straightforward to calculate the curvature energy
of this core structure and we find Fcore = 4.66Bλ2. The
core energy is independent of the reduced Burgers scalar
−b since (1) reduces to the conformally invariant Willmore
energy in the case of equally spaced layers. This adds to
the energy of the exterior region, which has only com-
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FIG. 3: (Top Left) A + 1
2

disclination line is converted into a

− 1
2

disclination line at a pincement (inset – rear view). (Top
Right) A toric focal conic domain inserted into an otherwise
unperturbed smectic. If we cut this into four by slicing a ver-
tical plane and a perpendicular horizontal plane through the
central point defect, the quarter toric domain is exactly the
pincement illustrated on the left. (Bottom Left) Converting
a + 1

2
disclination to a − 1

2
disclination without a bend in the

disclination line. The monopole is located where the cone
attaches to the disclination. (Bottom Right) Escaping a −1
disclination by attaching two half-cones to the layers.

pression energy since it has zero mean curvature. Sub-
stituting the expression for φscrew into (1) this energy is
found to be Fshell = (π/8)B−b2.

There are two things that we must check at the inter-
face between the core and the shell: 1) whether the layers
match at the cylinder of radius −b, and 2) whether the lay-
ers match up smoothly or there is a mismatch between
layer normals where the core meets the shell. To fit onto
the shell layers, the inner surfaces must intersect the cir-
cle of radius −b at height z = 0 at equally-spaced angles,
so that the pushoff at distance ` from the central helicoid
intersect the circle at an angle π`/(2−b). However, it is
straightforward but tedious to check that the intersection
is at an angle α(˜̀) = [˜̀

√
k/(1 + k) + tan−1(˜̀/

√
k + k2)]

where k2 = 1− ˜̀2. The difference between α(˜̀) and π ˜̀/2
is greatest at |˜̀| ≈ 0.73, where the two differ by 8%.
Thus the core cannot have vanishing compression and
also attach continuously to the other leaves and the dou-
ble helicoidal structure proposed in [8] requires this small
tweak. The additional compression energy can be esti-
mated by changing the spacing of the pushoffs in the core
so that the distance of the `th layer from the central heli-
coid is −bα−1(π ˜̀/2) rather than `. With this adjustment,
the core spacing now reads |∇φ| = d

d˜̀
[α−1(π ˜̀/2)], with

compression energy ∼ .015B−b2, a nonzero but small cor-
rection to the compression in the outer region quadratic
in −b. The bending energy stored in the mismatch be-
tween the layer normals carries a delta-function of mean
curvature, which will not scale with −b due to the confor-
mal invariance of the Willmore energy. Computing the
angle deficit βN(˜̀) = arccos(Nc ·Ns), where Nc and Ns

are the core and shell layer normals respectively. Allows
us to estimate the total bending energy in the mismatch
between layer normals as [βN(˜̀)]2 along the core bound-
ary, giving ∼ 0.79Bλ2, a small correction to the bending
energy of the core. More details of the energetic calcula-
tions can be found in the Supplementary Information.

Even with the modification of the core structure, we
find that the energy scales as Fcomposite ∼ Bb2 + C,
as argued in [7]. For large b this will be smaller than
the energy of the traditional, microscopic-core disloca-
tion Fstandard ∼ Bb4/ξ2 +χξ2, where ξ is the core radius
and χ is the smectic condensation energy density. We can
also compare Fcomposite to the energy of a screw disloca-
tion with an elastically melted nematic core [5]; minimiz-
ing the energy over ξ gives ξ ∝ b, leading to the scaling
Fstandard ∼

√
Bχb2. Deep in the smectic phase, χ > B,

and therefore for large enough b the composite screw will
have lower energy than the standard melted-core screw.

We have described the structure of a composite-core
dislocations comprised of two disclination lines and their
topology. In particular, line disclinations in three-
dimensional smectics carry a Z2 topological charge, ex-
actly as in three-dimensional nematics. Unlike nematics
however, “escape into the third dimension” is not allowed
in smectics and so the homotopy between different wind-
ing geometries occurs via higher-order monopoles. The
work presented here is valid only for smectic A textures,
where the layers have no additional structure, Smectic C
textures require the additional matching of the c-director
around the defect which we do not consider. In fu-
ture work we will complete the classification of defects
in smectics by studying the variety of allowable point de-
fects [19]. More generally, the connection between discli-
nations and dislocations remains an open issue in trans-
lationally ordered systems.
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