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The current understanding of MHD turbulence envisions turbulent eddies which are anisotropic
in all three directions. In the plane perpendicular to the local mean magnetic field, this implies that
such eddies become current-sheet-like structures at small scales. We analyze the role of magnetic
reconnection in these structures and conclude that reconnection becomes important at a scale λ ∼

LS
−4/7
L , where SL is the outer-scale (L) Lundquist number and λ is the smallest of the field-

perpendicular eddy dimensions. This scale is larger than the scale set by the resistive diffusion of
eddies, therefore implying a fundamentally different route to energy dissipation than that predicted
by the Kolmogorov-like phenomenology. In particular, our analysis predicts the existence of the
sub-inertial, reconnection interval of MHD turbulence, with the estimated scaling of the Fourier

energy spectrum E(k⊥) ∝ k
−5/2
⊥

, where k⊥ is the wave number perpendicular to the local mean
magnetic field. The same calculation is also performed for high (perpendicular) magnetic Prandtl

number plasmas (Pm), where the reconnection scale is found to be λ/L ∼ S
−4/7
L Pm−2/7.

PACS numbers: 52.35.Ra, 52.35.Vd, 52.30.Cv

Introduction. Turbulence is a defining feature of mag-
netized plasmas in space and astrophysical environments,
which are almost invariably characterized by very large
Reynolds numbers. The solar wind [1], the interstel-
lar medium [2, 3], and accretion disks [e.g., 4, 5] are
prominent examples of plasmas dominated by turbu-
lence, where its detailed understanding is almost cer-
tainly key to addressing long-standing puzzles such as
electron-ion energy partition, cosmic ray acceleration,
magnetic dynamo action, and momentum transport.

Weak collisionality implies that kinetic plasma physics
is required to fully describe turbulence in many such envi-
ronments [6]. However, turbulent motions at scales rang-
ing from the system size to the ion kinetic scales, an in-
terval which spans many orders of magnitude, should be
accurately described by magnetohydrodynamics (MHD).

The current theoretical understanding of MHD tur-
bulence largely rests on the ideas that were put forth
by Kolmogorov and others to describe turbulence in
neutral fluids (the K41 theory of turbulence [7]), and
then adapted to magnetized plasmas by Iroshnikov and
Kraichnan [8, 9] and, later, Goldreich and Sridhar (GS95)
[10]. Very briefly, one considers energy injection at
some large scale, L, (the forcing, or outer, scale) which
then cascades to smaller scales through the inertial
range where, by definition, dissipation is negligible and
throughout which, therefore, energy is conserved. At the
bottom of the cascade is the dissipation range, where the
gradients in the flow are sufficiently large for the dissipa-
tion to be efficient.

Turbulence in magnetized plasmas fundamentally dif-
fers from that in neutral fluids due to the intrinsic
anisotropy introduced by the magnetic field. GS95 sug-
gests this leads to turbulent eddies which are longer in the

direction aligned with the local field than in the direction
perpendicular to it. The relationship between the field-
parallel and perpendicular dimensions is set by critical
balance: VA,0/ℓ ∼ vλ/λ, where VA,0 is the Alfvén veloc-
ity based on the background magnetic field B0, ℓ and λ
are, respectively, the field-aligned and field-perpendicular
dimensions of the eddy, and vλ is the velocity perturba-
tion at that scale.

More recently, it was argued [11] that the GS95 picture
of turbulence needs to be amended to allow for angular
alignment of the velocity and magnetic field perturba-
tions at scale λ. As a result, eddies are also anisotropic
in the plane perpendicular to the local magnetic field, be-
ing thus characterized by three scales: ℓ, along the field,
and λ and ξ, perpendicular to the field. Although the
precise structure of MHD turbulence remains an open
research question, observational and numerical evidence
in support of 3D anisotropic eddies has since been re-
ported [12–14].

A particularly interesting feature of 3D anisotropic ed-
dies is that they can be thought of as current sheets of
thickness λ and length ξ in the field-perpendicular plane
(with ξ ≫ λ). Following the standard Kolmogorov-like
arguments, one would then conclude that the inertial in-
terval ends when the scale λ becomes comparable to the
dissipation scale. Below this scale the energy is strongly
dissipated in the current sheets. Currently available nu-
merical simulations indicate that a considerable fraction
of small-scale current sheets look like sites of magnetic
reconnection [e.g., 15–20]. We note that such a dissipa-
tion channel is not a feature of the GS95 model, which
predicts filament-like eddies at small scales.

In this Letter we propose that at sufficiently large
magnetic Reynolds numbers, the route to energy dis-
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sipation in MHD turbulence is fundamentally different
from that envisioned in the Kolmogorov-like theory.
This hapens since the anisotropic, current-sheet-like
eddies become the sites of magnetic reconnection before

the formal Kolmogorov dissipation scale is reached.
This Letter presents the first analytical attempt to
quantify this phenomenon and to characterize the role
of reconnection in MHD turbulence.

Background. The 3D anisotropic eddies that we en-
vision are depicted in Fig. 2 of Ref. [11]. We will char-
acterize them by the smallest of their field-perpendicular
dimensions, λ; other quantities of interest to us here are
related to λ as follows [11]:

ξ ∼ L(λ/L)3/4, (1)

ℓ ∼ L(λ/L)1/2, (2)

bλ ∼ B0(λ/L)
1/4, (3)

vλ ∼ V0(λ/L)
1/4, (4)

τ ∼ ℓ/VA,0 ∼ λ1/2L1/2/VA,0, (5)

VA,λ ∼ VA,0(λ/L)
1/4, (6)

where bλ and vλ are the magnetic field and velocity per-
turbations at scale λ, τ the eddy turn-over-time, V0 is
the velocity at the outer scale, and the other quantities
have already been introduced [21]. The scalings (1–6)
imply the Fourier energy spectrum of MHD turbulence

E(k⊥) ∝ k
−3/2
⊥

[e.g., 22–31]. The turbulence is governed
by the shear-Alfvén modes, it is strongly nonlinear and
essentially three-dimensional [e.g., 30, 32].
We will, for simplicity, consider the case where the tur-

bulence is critically balanced at the outer scale such that
the outer-scale Lundquist number, SL ≡ LVA,0/η is com-
parable to the outer-scale magnetic Reynolds number,
Rm ≡ LV0/η. We also introduce the Lundquist num-
ber associated with scale λ, Sλ ≡ λVA,λ/η. [33] A lower
bound on the dissipation scale can be obtained from these
scalings by equating τ with the eddy resistive diffusion
time, λ2/η; this can be thought of as the Kolmogorov
inner scale for a turbulent cascade defined by Eqs. (1–6).
It yields

λ/L ∼ S
−2/3
L ∼ R−2/3

m . (7)

Magnetic Reconnection. Let us begin by observing
that the aspect ratio of an eddy in the perpendicular
direction is

ξ/λ ∼ (L/λ)1/4, (8)

i.e., it increases as λ → 0. So, in the perpendicular plane,
eddies become ever more elongated current sheets as λ
gets smaller. This is qualitatively different from the GS

picture, where both field-perpendicular dimensions are
the same, and so the eddy tends to a point in the per-
pendicular plane as λ → 0.
It is therefore natural to ask at what scale (i.e., aspect

ratio) does reconnection of these current sheets (eddies)
become an important effect, if ever. If it does, it should
leave a well defined signature in both the magnetic and
kinetic energy spectra. It may not, however, correspond
to the energy dissipation scale, since reconnection, in
addition to dissipating magnetic energy, also accelerates
flows.

Sweet-Parker reconnection of eddies. The simplest es-
timate that can be done for eddy reconnection stems from
the Sweet-Parker model [34, 35], according to which the
scale λ at which an eddy would reconnect is given by

λ/ξ ∼ S
−1/2
ξ , (9)

where Sξ = ξVA,λ/η is the Lundquist number pertaining
to a current sheet of length ξ, at scale λ, defined with the
Alfvén velocity based on the perturbed magnetic field at
that scale, Eq. (6). Using Eqs. (1–6) above, one finds
that Eqs. (9) and (7) are equivalent statements [19].
This important observation immediately points to

the problem with the Kolmogorov-like transition to the
dissipation regime. A robust conclusion of the past
decade of reconnection research is that Sweet-Parker
current sheets above a certain critical aspect ratio,
corresponding to a Lundquist number Sc ∼ 104, are
violently unstable to the formation of multiple magnetic
islands, or plasmoids (see [36] for a recent review). One
straightforward implication of this instability [37–40] is
that the Sweet-Parker current sheets cannot be formed
in the first place [37, 41–43]. We now demonstrate that
the MHD turbulent cascade will be affected by this
instability before it has a chance to form Sweet-Parker
current sheets at small scales, thus qualitatively chang-
ing the route to energy dissipation in MHD turbulence.

Dynamic reconnection onset and eddy disruption by the

tearing instability. According to the above discussion,
turbulent eddies may be viewed as a hierarchy of current
sheets, whose dynamical (eddy-turnover) times are given
by (5). Consider an eddy at some scale λ and ask what
would be the rate of a linear tearing instability triggered
by its magnetic profile. Obviously, if the rate of the lin-
ear instability turns out to be much higher than the eddy
turnover rate, the eddy evolution may be considered slow
and the linear theory would apply. The dynamics of the
eddy at such a scale then would be dominated by recon-
nection. By the same token, the eddies whose turnover
rates are much higher than the reconnection rates will
not be affected by reconnection.
The central result of our work is that for large enough

Lundquist numbers, the small-scale part of the inertial in-
terval formally predicted by the Alfvénic theory (1)-(6)
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inevitably falls in the reconnection-dominated domain.
Indeed, as the scale λ decreases, the rate of the cor-
responding tearing instability increases faster than the
eddy turnover rate (5). We can therefore define a criti-
cal scale λcr at which the two rates become comparable.
Below this scale the Alfvénic turbulence must cross-over
to the new, reconnection dominated regime.
In order to estimate the critical scale λcr we note that

the tearing instability has two well-known regimes, FKR
(small tearing mode instability parameter, ∆′) [44] and
Coppi (large ∆′) [45]. The N = 1 mode, related to the
tearing perturbation wavenumber through k/2π = N/ξ,
is the most unstable mode until it transitions into the
Coppi regime. This happens at the scale that satisfies

(ξ/λ)S
−1/4
λ ∼ 1, (10)

yielding the transition scale for the N = 1 mode

λtr,1/L ∼ S
−4/9
L . (11)

In other words, if λ > λtr,1, the most unstable mode in
the current sheet is an FKR mode; if the opposite is true,
it is instead a Coppi mode which is the most unstable.
We define the critical scale for any mode N , λcr,N ,

as the scale at which the growth rate γ of that mode
matches the eddy turn over time at that scale, given by
Eq. (5). Strictly speaking, the tearing mode analysis can-
not be performed on a background which is evolving on
a time scale comparable to the growth time of the in-
stability; however, as we discussed above, the criterion
γτ ∼ 1 provides a reasonable estimate for the turbu-
lence scale at which tearing becomes important. For the
N = 1 mode while in the FKR regime, the growth rate

is γFKR
1 ∼ ξ2/5V

2/5
A,λλ

−2η3/5. The equation γFKR
1 τ ∼ 1

therefore yields

λcr,1/L ∼ S
−6/11
L . (12)

We see that λcr,1 < λtr,1, implying that the modes
that will become critical are not FKR modes, but rather
Coppi modes. For these modes the largest growth rate

is γCoppi
max ∼ τ−1

A,λS
−1/2
λ , where τA,λ ≡ λ/VA,λ, correspond-

ing to a mode number NCoppi
max ∼ ξ/λS

−1/4
λ . The critical-

ity condition that the tearing mode growth rate becomes
comparable to the eddy turnover rate γCoppi

max τ ∼ 1 now
yields

λCoppi
cr /L ∼ S

−4/7
L , (13)

which is the main result of our work.
It is easy to see that (13) corresponds to a mode num-

ber, that is, number of magnetic islands, or plasmoids,
that would form inside a sheet of thickness λCoppi

cr and

length ξCoppi
cr ≡ ξ(λCoppi

cr ) ∼ LS
−3/7
L , given by

NCoppi
max ∼ S

1/14
L . (14)

Coppi modes, as they become nonlinear, lead to a loss
of equilibrium that happens on the Alfvénic timescale at
scale λ, τA,λ [46, 47]. Therefore, Eq. (13) identifies the
scale at which reconnection becomes dynamically rele-
vant to the turbulence.
Finally, we may compute the width of the inner bound-

ary layer of the tearing instability corresponding to this
most unstable mode, which is given by [41] δin ∼

[γ(ξ/NVA,λ)
2λ2η]1/4 evaluated for the scale obtained in

Eq. (13):

δCoppi
in,max/L ∼ S

−9/14
L . (15)

Whether this scale is larger or smaller than kinetic scales
in the plasma at hand (the ion (sound) Larmor radius,
or the ion skin depth) decides the adequateness, or lack
thereof, of the MHD tearing mode theory in describing
the transition to the reconnection-dominated domain of
the turbulence spectrum.
Large magnetic Prandtl number. The calculation

above can be straightforwardly repeated for cases in
which the magnetic Prandtl number, Pm ≡ ν⊥/η, is
large. We are referring to the perpendicular viscosity,
not the parallel one — see the discussion in section II
B of [40]. The perpendicular magnetic Prandtl number
that we consider here is Pm ∼ (mi/me)

1/2βi, and it can
be large in astrophysical plasmas.
The scalings for the linear tearing mode in the small

and large ∆′ regimes at high Prandtl number were de-
rived in [48] and are conveniently summarized in [40].
Since this calculation is entirely similar to the one in the
previous section, we limit ourselves to stating the main
results. For the N = 1 mode in the Pm ≫ 1 regime,

the transition scale is λtr,1/L ∼ S
−4/9
L Pm2/9, whereas

the critical scale is λcr,1/L ∼ S
−8/15
L Pm−2/15. Clearly

λcr,1 ≪ λtr,1 implying, as above, that the modes that
will become critical are Coppi modes. The critical scale
is now

λCoppi
cr /L ∼ S

−4/7
L Pm−2/7, (16)

corresponding to mode number NCoppi
max = S

1/14
L Pm2/7.

The inner boundary layer now scales as δCoppi
in,max/L ∼

S
−9/14
L Pm−1/14.
We see that Eq. (16) yields a smaller scale than its in-

viscid counterpart, Eq. (13). This makes intuitive sense:
viscosity slows down the Coppi modes; as such, the tear-
ing and turbulence timescales can only match at a scale λ
smaller (and, therefore, larger current sheet aspect ratio,
ξ/λ) than in the absence of viscosity.
The nonlinear evolution of large Pm tearing modes

is less well understood than the low Pm case, but we
expect a similar loss of equilibrium as in the inviscid
case to take place. Thus, as in the inviscid case, Eq. (16)
identifies the scale at which the eddies become affected
by tearing instability.
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Spectrum of turbulence below the reconnection scale.

We now address the spectrum below the reconnection
scale identified by Eq. (13), or Eq. (16) for Pm ≫ 1
plasmas. A plausible estimate for such a spectrum may
be obtained based on a simplified phenomenological pic-
ture that approximates turbulent structures as a hierar-
chy of collapsing plasmoid chains. As the island chain be-
comes nonlinear, it may undergo X-point collapse, with
new current sheets forming between each two plasmoids.
These may themselves be unstable to plasmoid forma-
tion, and so on. Assuming one can apply here what is
known from the dynamics of large Lundquist number re-
connecting systems (see, e.g. [36, 49–53]), the final state
would be one where there is a distribution of plasmoid
sizes, whose dynamics is dictated by advection out of the
current sheet, coalescence, and generation of new plas-
moids. This can be viewed as a new sub-inertial-range
interval of turbulence, which may be characterized by its
own power spectrum [54–56].
In order to derive the spectrum in this “reconnection

interval”, we first note that we expect such plasmoids of
many different sizes to be separated from each other by
Sweet-Parker current sheets of a length, Lc, such that
their aspect ratio is marginally stable to plasmoid for-

mation, ∼ S
1/2
c [49], where Sc = LcVA,λCoppi

cr

/η is the

critical Lundquist number, Sc ∼ 104. The rationale is
that current sheets longer than Lc, and therefore larger
values of the Lundquist number, are unstable to plas-
moid formation; if, on the other hand, they are shorter
than Lc, they will be stretched to that length by dif-
ferential background flows [49] (implying that the total
number of plasmoids per current sheet can be estimated

as N ∼ ξCoppi
cr /Lc ∼ S−1

c S
3/7
L ).

The thickness of these critical current sheets is esti-
mated as:

δc ∼ LcS
−1/2
c ∼ λCoppi

cr S−1

λCoppi
cr

S1/2
c , (17)

where SλCoppi
cr

= λCoppi
cr VA,λCoppi

cr

/η. Using Eq. (13), we
thus obtain

δc/L ∼ S1/2
c S

−6/7
L . (18)

These critical current sheets are the structures where
ohmic and viscous dissipation is happening [51]. It is rea-
sonable to assume that Eq. (18) sets the dissipation scale,
that is, the scale below which the reconnection interval is
ultimately terminated by the dissipation. Assuming that
the energy spectrum in this interval follows a power law,
we write it in the form

E(k⊥) ∝ k
−3/2
0 (k⊥/k0)

−α
, (19)

where k0 ∼ 1/λCoppi
cr is the wavenumber corresponding

to the reconnection scale (13), where the reconnection-
interval spectrum matches the inertial-interval spectrum

( )

FIG. 1. Sketch of the Fourier energy spectrum (log-log scale)
and the shapes of eddies as a function of k⊥ ∼ 1/λ. The
arrows indicate the direction of the magnetic field lines. For
k⊥ < kcr ∼ 1/λcr , the turbulent eddies become progressively
more anisotropic as k⊥ approaches kcr. For k⊥ > kcr, the
tearing instability is an essential part of the turbulence.

of MHD turbulence E(k⊥) ∝ k
−3/2
⊥

. The power-law spec-
trum (19) extends up to the wavenumber k∗ ∼ 1/δc cor-
responding to the dissipation scale (18), after which it is
expected to decline fast.
We now calculate the rate of magnetic energy dissipa-

tion using the spectrum (19):

−
dE

dt
= η

k∗∫
k2⊥E(k⊥)dk⊥ ∝ S

4
7 (−

3
2
+α)+ 6

7
(3−α)−1

L . (20)

In a steady state, the rate of energy dissipation must be
equal to the constant rate of energy cascade from the
large-scale MHD turbulence, and hence independent of
the Lundquist number. This defines the scaling of the
energy spectrum: α = 5/2. The energy spectrum and the
eddy structure envisioned in our model are represented
in Fig. (1).
Finally, note that the validity of Eq. (18) rests on it

being smaller than Eq. (13) (or, equivalently, ξCoppi
cr ≫

Lc); this yields a criterion for the minimum value of the
outer scale Lundquist number that is needed to observe

this k
−5/2
⊥

spectrum: SL ≫ S
7/4
c ∼ 107.

Discussion and Conclusion. The results derived
above present a compelling case for revisiting the
mechanism of energy dissipation envisioned in existing
Kolmogorov-like theoretical models of MHD turbulence.
Because of progressively increasing eddy anisotropy at
small scales [11, 31, 57], at a sufficiently small scale
the reconnection time becomes comparable to the eddy
turnover time. Reconnection, we have argued, disrupts
the eddies at that scale, and implies that no such eddies
can form at smaller scales. The energy cascade from the
large scales, where it is injected, to the smallest scales,
where it dissipates, must therefore proceed through a new
sub-inertial stage where reconnection, the resulting struc-
tures and associated flows are key players.
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As has been noted in the past, the presence of the large-
scale magnetic field and the Alfvénic time scale implies
that the Kolmogorov first self-similarity hypothesis may
not hold for MHD turbulence [e.g., 58]. In particular,
the spectrum of MHD turbulence may depend not only,
or not at all, on the Kolmogorov-like dissipation scale.
The presented analysis provides physical arguments for
the existence of alternative scales (13) and (18) that play
a crucial role in MHD turbulence. The dissipation scale
(18) decreases faster with the Lundquist number than the
Kolmogorov scale (7). This means, for example, that in
order for the numerical simulations of MHD turbulence
to be resolved, their discretization scale should decrease
faster than the Kolmogorov scale (7) as the Lundquist
number increases. This property of MHD turbulence has
also been discussed in [58].

Finally, we point out that the generation of secondary
islands in two-dimensional MHD turbulence has been
previously numerically detected at Lundquist numbers
up to ∼ 104 − 105 [e.g., 15–18]. The transition to the
new spectral scaling, however, was not observed in these
studies. Although the 2D case is qualitatively differ-
ent from its 3D counterpart [e.g., 32, 59], these numeri-
cal results may also be explained by insufficiently large
SL numbers, or they may, possibly, indicate our incom-
plete understanding of the reconnection-dominated inter-
val. Indeed, the scaling (18) and the spectrum (19) are
phenomenological estimates in that they have not been
self-consistently derived from a theory of a reconnection-
dominated cascade. Such a theory is not currently avail-
able; the definitive conclusion on the scaling and the
structure of this interval should therefore await further
analytic studies and numerical investigations.

We may, however, compare our results with avail-
able numerical simulations of reconnection-induced tur-
bulence [55]. Although in these simulations the recon-
necting magnetic profile was not generated by a turbulent
cascade but rather imposed as an initial condition, they
may capture the dynamics of the reconnection-dominated
spectral interval. These simulations produce the spectra
ranging from −2.1 to −2.5, which are broadly consistent
with our model.
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