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Abstract9

A longstanding challenge in time-dependent density functional theory is to efficiently solve the exact10

time-dependent optimized effective potential (TDOEP) integral equation derived from orbital-dependent11

functionals, especially for the study of non-adiabatic dynamics in time-dependent external fields. In this12

letter, we formulate a completely equivalent time-local TDOEP equation that admits a unique real-time13

solution in terms of time-dependent Kohn-Sham and effective memory orbitals. The time-local formulation14

is numerically implemented, with incorporation of exponential memory loss to address the unaccounted15

for correlation component in the exact-exchange only functional, to enable study of the many-electron16

dynamics of a one-dimensional hydrogen chain. It is shown that the long time behavior of the electric17

dipole converges correctly and the zero-force theorem is fulfilled in the current implementation.18
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Time-dependent density functional theory (TDDFT) introduced in 1984 [1] is not only for-19

mally exact, but also computationally advantageous when dealing with many-electron dynamics20

in time-dependent external fields [2, 3]. Extensive numerical simulations based on TDDFT have21

been performed to study high harmonic generation and ultrafast spectroscopy in attosecond sci-22

ence [4], electronic excited states in optical materials and in photochemistry [5], and excited-state23

electron-ion dynamics in biological systems [6]. Furthermore, the real-time TDDFT in the con-24

text of quantum optimal control theory also opens up the possibility of manipulating interacting25

quantum systems [7]. Recently, TDDFT has been extended to explore, for instance, the Kondo26

effect [8], many-electron systems interacting with cavity photons [9], thermoelectric phenomena27

[10], electrical currents induced by ultrafast laser excitation [11], ion-material collisions [12], and28

laser-induced interlayer in layered materials [13].29

In spite of a plethora of successful applications of TDDFT, the exact form of the exchange-30

correlation (xc) potential has defied efforts seeking its discovery, and time-dependent xc potentials31

obtained directly from the adiabatic extension of approximate density-dependent functionals, such32

as LDA [14] and GGA [15], suffer from several significant drawbacks including (1) the existence33

of an undesirable Hartree self-interaction, (2) the absence of the intrinsic derivative discontinu-34

ity, and (3) the lack of a proper memory effect [16]. A promising approach to overcome these35

drawbacks is through the use of functionals that utilize Kohn-Sham (KS) orbitals ϕ jσ(r, t) in-36

stead of the density ρ(r, t) [17–19]. For example, the exact-exchange functional is free of the37

Hartree self-interaction error and leads to the correct −1/r asymptotic behavior for finite systems38

[20]. In addition, orbital-dependent functionals naturally incorporate the derivative discontinuity39

[21, 22]. Furthermore, orbital-dependent functionals make possible systematic construction of40

the exchange-correlation potential via either the Keldysh perturbation expansion [23] or the time-41

dependent generalization of the Görling-Levy perturbation expansion [24]. It will be shown in this42

letter that the memory effect is inherent in the orbital-dependent functional approach.43

To incorporate orbital-dependent functionals in time-dependent Kohn-Sham framework, a44

time-dependent optimized-effective potential (TDOEP) integral equation needs to be solved effi-45

ciently and accurately for orbital-independent multiplicative potentials [25, 26]. Although con-46

struction of TDOEP is an important undertaking in TDDFT [27–29], the full TDOEP integral47

equation thus far has been only implemented in exact-exchange for a quasi-one-dimensional48

quantum well [30] because the equation is highly nonlocal both temporally and spatially [3, 31].49

Many DFT and TDDFT calculations have adopted the Krieger-Li-Iafrate (KLI) approximation due50
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to its simplicity [25, 32], despite the KLI approximation overestimating the polarizability and hy-51

perpolarizability even in static cases [33, 34]. A straightforward application of the time-dependent52

KLI approximation to molecules also produced inadequate short bond lengths and unexpected53

high dissociation energies [35]. Moreover, Mundt and Kümmel showed that the time-dependent54

KLI approximation in the exact-exchange functional violates both the zero-force theorem and en-55

ergy conservation [36]. Recently, it was shown that an exact solution of the TDOEP equation for56

a quasi-one-dimensional model quantum well problem has much richer temporal charge-density57

oscillation features in the time-dependent dipole moment than do solutions of the time-dependent58

KLI and the adiabatic approximation [30]. These findings clearly indicate the need for a full, yet59

efficient solution beyond the KLI approximation.60

An efficient and stable method for solving the exact TDOEP has remained elusive [25, 30, 37].61

The step-by-step approach proposed by Mundt and Kümmel was numerically unstable [30, 31,62

37]. The global self-consistency scheme proposed by Wijewardane and Ullrich [30], in which63

the nonlinear TDOEP integral was solved iteratively, is computationally too expensive for two-64

and three-dimensional problems. In order to circumvent these difficulties, this letter derives an65

equivalent Sturm-Liouville-type time-local TDOEP equation that is amenable to a direct solution66

in real time.67

Much effort has gone into the construction of the xc potential containing the memory effect,68

including time-dependent current density functional theory (TDCDFT) approach, which utilizes69

both the time-dependent current density and time-dependent density [38–44], and time-dependent70

deformation functional theory (TDDefFT) approach, which reformulates TDDFT in a co-moving71

Lagrangian reference frame [44–46]. In these approaches, stress-like tensors in the hydrodynamic72

context were formulated to incorporate the xc scalar potential as well as the xc vector potential73

in the most general case. In this letter, it is shown that the time-local TDOEP equation can be74

cast in terms of a stress-like tensor, which incorporates the non-adiabatic effect in time-dependent75

effective memory orbitals (orbital shifts in Ref. [37]) and the orbital-dependent current density.76

The time-dependent xc potential, vxcσ(r, t), associated with orbital-dependent functionals satis-77

fies a self-consistent nonlinear integral equation [25, 26]78

−i
Nσ∑
j=1

∫ t

−∞

dt′
∫

d3r′ϕ∗jσ(r, t)
∞∑

k=1

ϕkσ(r, t)ϕ∗kσ(r′, t′)

×
[
vxcσ(r′, t′) − u∗xc jσ(r′, t′)

]
ϕ jσ(r′, t′) + c.c. = 0 , (1)

where the subscript σ denotes electron spin, ϕ jσ(r, t) is the time-dependent KS orbital satisfying79
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the time-dependent KS equation,80 [
i
∂

∂t
− Ĥσ

]
ϕ jσ(r, t) = 0, (2)

with Ĥσ = −∇
2

2 +v(r, t)+vH(r, t)+vxcσ(r, t) being the time-dependent KS Hamiltonian consisting of81

the external potential v(r, t), Hartree potential vH(r, t), and exchange-correlation potential vxcσ(r, t),82

and uxc jσ(r, t) is defined as83

uxc jσ(r, t) =
1

ϕ∗jσ(r, t)
δAxc[{ϕiσ}]
δϕ jσ(r, t)

, (3)

which involves the functional derivative of the exchange-correlation action functional Axc with84

respect to ϕ jσ(r, t) . We remark that there have been discussions recently regarding whether the85

action-integral functional can be used to establish the equation of motion for time-dependent quan-86

tum systems at the density-functional level [47, 48]. Nonetheless, we emphasize that the TDOEP87

method is an exact procedure to construct an optimized effective time-dependent xc potential from88

an orbital-dependent action functional taking into account the proper non-adiabatic (memory) ef-89

fect in the time-dependent KS equation, Eq. (2).90

Following Ref. [37], Eq. (1) is rewritten in a compact form as91

Nσ∑
j=1

ϕ∗jσ(r, t) χ jσ(r, t) + c.c. = gσ(r, t) , (4)

in terms of the time-dependent KS orbitals ϕ jσ(r, t) and the time-dependent effective memory (EM)92

orbitals χ jσ(r, t) defined as93

χ jσ(r, t) ≡ −i
∫ t

−∞

dt′
∫

d3r′
∞∑

k=1

ϕkσ(r, t)ϕ∗kσ(r′, t′)
{
vxcσ(r′, t′)

−u∗xc jσ(r′, t′) −
[
v̄xc jσ(t′) − ū∗xc jσ(t′)

] }
ϕ jσ(r′, t′) , (5)

where94

v̄xc jσ(t) =

∫
ϕ∗jσ(r, t)vxcσ(r, t)ϕ jσ(r, t)d3r , (6)

ū∗xc jσ(t) =

∫
ϕ∗jσ(r, t)u∗xc jσ(r, t)ϕ jσ(r, t) d3r , (7)

gσ(r, t) = i
Nσ∑
j=1

|ϕ jσ(r, t)|2
∫ t

−∞

[
ūxc jσ(t′) − ū∗xc jσ(t′)

]
dt′ . (8)
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It can be readily shown that each EM orbital χ jσ(r, t) satisfies the time-dependent EM orbital95

equation,96 [
i
∂

∂t
− Ĥσ

]
χ jσ(r, t) =

{
vxcσ(r, t) − u∗xc jσ(r, t)

−
[
v̄xc jσ(t) − ū∗xc jσ(t)

] }
ϕ jσ(r, t). (9)

The time-dependent EM orbital χ jσ(r, t) defined by Eq. (5) is formally identical to the orbital shift97

coined by Mundt and Kümmel [37]; however, in this work, it is specifically designated to manifest98

the memory effect in the time-local TDOEP equation, see Eqs. (18) and (20) below and the corre-99

sponding discussion. In the static limit, χ jσ(r, t) can be written as χ jσ(r, t) = χ jσ(r, 0) exp[−iε jt],100

and Eq. (4) reduces to the static OEP integral equation [37, 49]. For a system prepared in a ground101

state at t = 0, the initial KS orbitals ϕ jσ(r, 0), EM orbitals χ jσ(r, 0), and xc potential vxcσ(r, 0) are102

obtained by solving the corresponding static OEP [50]. The time-dependent EM orbitals χiσ(r, t)103

are endowed with the memory effect of the TDOEP as shown in Eq. (5) and (9). It will be further104

shown that the KS orbitals together with the EM orbitals are sufficient to determine the TDOEP105

directly at each instant t using a Sturm-Liouville-type equation.106

A large class of the orbital-dependent xc actions Axc, see Ref. [3, 19], can be written in107

the form of either Axc =
∑

i
∑

k

∫ ∫ ∫
F[{ϕiσ(r, t′)ϕ∗kσ(r, t′)ϕ∗iσ(r′, t′)ϕkσ(r′, t′)}] d3r′d3r dt′ or108

Axc[{|ϕiσ(r, t)|2}], including the widely used exact-exchange functional [30, 37]109

Aexact
x

[
{ϕiσ}

]
= −

1
2

∑
σ

Nσ∑
j, k=1

∫ t

−∞

dt′
∫

d3r
∫

d3r′
ϕ∗jσ(r′, t′)ϕkσ(r′, t′)ϕ jσ(r, t′)ϕ∗kσ(r, t′)

|r − r′|
, (10)

resulting in the following relations:110 ∫
δAxc

δϕ jσ(r, t)
ϕ jσ(r, t) d3r − c.c. = 0 , (11)

and111 ∑
j

δAxc

δϕ j(r, t)
ϕ j(r, t) − c.c. = 0 . (12)

Eq. (11) leads to a real function ūxc jσ(t), which in turn yields the equality gσ(r, t) = 0 [27], and112

Eq. (12) results in the equality
∑

j i uxc jσ(r, t) |ϕ jσ(r, t)|2 + c.c. = 0. Without loss of generality, we113

only consider the TDOEP in exchange-correlation functionals satisfying Eq. (11) and Eq. (12) in114

the following analysis. Moreover, to facilitate the presentation, we adopt the abbreviated notation115

ϕ jσ = ϕ jσ(r, t), χ jσ = χ jσ(r, t), vxcσ = vxcσ(r, t) and uxc jσ = uxc jσ(r, t) whenever it is unambiguous.116
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It has been pointed out that the Volterra-like integral TDOEP equation, Eq. (1), does not possess117

a nonzero upper limit at t′ = t, making it difficult to solve for vxcσ(r, t), step by step, while the118

time-dependent KS orbitals propagate in time domain [30]. This predicament can be overcome119

by further differentiating Eq. (1), or equivalently Eq. (4), with respect to time until reaching an120

equation that can explicitly reveal the intended vxcσ(r, t). To this end, by differentiating Eq. (4)121

with respect to time,122

∂

∂t

 Nσ∑
j=1

ϕ∗jσ(r, t) χ jσ(r, t)

 + c.c. = 0 , (13)

and using the time-dependent KS equation and the time-dependent EM orbital equation, we derive123

the equation124

Nσ∑
j=1

[
i
(
Ĥσϕ

∗
jσ

)
χ jσ − iϕ∗jσ

(
Ĥσχ jσ

)]
+ c.c. = 0 , (14)

which can be written succinctly as125

∇ ·~Jσ = 0 , (15)

where ~Jσ, analogous to the probability current, is defined as126

~Jσ =

Nσ∑
j=1

i
2

[(
∇ϕ∗jσ

)
χ jσ − ϕ

∗
jσ

(
∇χ jσ

)]
+ c.c. (16)

Introducing Eq. (5) and Eq. (16) into Eq. (15) leads to a non-linear integro-differential equation127

for the function vxcσ(r, t). Numerically solving ϕ jσ and vxcσ, which are required to satisfy the128

time-dependent KS equation Eq. (2) and the non-linear integro-differential equation Eq. (15)129

concurrently, poses a computationally daunting task for two- and three- dimensional problems. To130

circumvent this difficulty, we first differentiate Eq. (15) with respect to time to obtain the relation,131

∇ ·

Nσ∑
j=1

i
2

{ [(
∇∂t ϕ

∗
jσ

)
χ jσ +

(
∇ϕ∗jσ

) (
∂t χ jσ

)
−

(
∂t ϕ

∗
jσ

) (
∇χ jσ

)
− ϕ∗jσ

(
∇∂t χ jσ

)] }
+ c.c. = 0 . (17)

By invoking Eq. (2), Eq. (4), Eq. (9), and the equality gσ(r, t) = 0, Eq. (17) can be cast into a132

real-time TDOEP equation,133

∇ · ( ρσ∇vxcσ) = ζσ , (18)
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for vxcσ(r, t), where134

ζσ =

Nσ∑
j=1

{ (
44ϕ∗jσ

)
χ jσ − 2

(
4ϕ∗jσ

) (
4χ jσ

)
+ϕ∗jσ

(
44χ jσ

)
+

(
4ϕ∗jσ

) (
u∗xc jσϕ jσ

)
−ϕ∗jσ

[
4

(
u∗xc jσϕ jσ

)] }
+ c.c. . (19)

and 4 = −∇
2

2 . Eq. (18) is a Sturm-Liouville-type equation that possesses a unique solution when135

subject to appropriate physical boundary conditions [51, 52]. Furthermore, we differentiate Eq.136

(4) with respect to r to yield the relation ∇2
(∑Nσ

j=1 ϕ
∗
jσχ jσ + c.c.

)
= 0 . With the aid of this relation,137

Eq. (18) can also be written in a compact tensor form,138

∇ · ( ρσ∇vxcσ) = −∇ · (F(t)
σ + F(w)

σ ) , (20)

which contains two xc force terms139

F(t)
σµ =

∑
ν=1,2,3

∂ντσµν (21)

and140

F(w)
σµ =

Nσ∑
j=1

[
i j jσµ

(
uxc jσ−c.c.

)
−
|ϕ jσ|

2

2
∂µ

(
uxc jσ + c.c.

)]
, (22)

where the time-dependent kinetic-like stress tensor141

τσµν =

Nσ∑
j=1

1
2

[
(∂µϕ∗jσ)(∂νχ jσ) + (∂νϕ∗jσ)(∂µχ jσ) + c.c.

]
(23)

and the orbital-dependent current density142

j jσµ =
i
2

[
(∂µϕ∗jσ)ϕ jσ − ϕ

∗
jσ(∂µϕ jσ)

]
, (24)

with µ, ν = 1, 2, 3 labeling the Cartesian coordinate x = (x1, x2, x3), and ∂µ denotes ∂/∂xµ. Finally,143

we remark that it is in principle possible to introduce a new orthogonal coordinate system x′ =144

x′(x) corresponding to the Jacobian matrix Jij = ∂x′i/∂xj = [ρσ(x, t)]−1δij, as well as subject to the145

condition x′(x = 0) = 0, such that Eq. (18) can be rewritten as a Poisson-like equation146

∇′2vxcσ(x′, t) = ζ′σ(x′, t) , (25)

where ζ′σ(x′, t) = ρσ(x′, t)ζσ(x′, t) and ∇′ denotes the differential operator with respect to the new147

coordinate x′.148
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It is instructive that the TDOEP equation, Eq. (20), can be cast in a hydrodynamic context as149

in the other non-adiabatic approaches [39–46], showing that the nonadiabatic dynamics is mani-150

fested in the time-dependent kinetic-like stress tensor τσ and orbital-dependent current density j jσ.151

In addition, Eq. (22) shows two different aspects of the non-locality of the exchange-correction152

potential, one to do with the orbital-dependent current density j jσ and the other with the orbital-153

dependent density |ϕ jσ|
2. These observations suggest that Eq. (20) may be amenable to further154

development in non-adiabatic xc potentials as well as orbital-dependent current density function-155

als. Moreover, we remark that Ruggenthaler and Bauer have found an local Hatree-exchange only156

(LHXO) approximation for the effective potential corresponding to the exact Hartree-exchange157

forces, while the correlation part of the interacting wave function is ignored [53]. Interestingly,158

our time-local TDOEP equation reduces to the LHXO approximation when omitting the EM or-159

bitals, resulting in F(t)
σ = 0 in Eq. (20).160

Finally, it is important to point out that the time-local equation, Eq. (20), can be solved in161

parallel to Eqs. (2) and (9), respectively, for the KS orbitals ϕ jσ(r, t) and the EM orbitals χ jσ(r, t).162

In contrast, solving the non-linear, nonlocal integral equation, Eq. (1) would require all past163

dynamical information about the KS orbitals. In this regard, the instantaneous EM orbital χ jσ(r, t)164

effectively carries all memory of the evolving system. Within the framework of time-dependent165

EM orbitals, the time-dependent xc potential is considered as a functional of the instantaneous KS166

and EM orbitals, analogous to the Hartree potential as a functional of the occupied KS orbitals.167

From a numerical perspective, solving the time-local TDOEP equation also benefits from avoiding168

the storage of the entire history of time-dependent KS orbitals ϕ jσ(r, t′) and vxcσ(r, t′) for all t′ < t.169

It is remarked that the exact-exchange only TDOEP equation does not contain the memory loss170

associated with the unaccounted for correlation component, which is an essential feature in post-171

ALDA TDDFT [54]. In addition, solving the highly nonlinear Eqs. (9) and (20) concomitantly172

would require extremely accurate time-dependent EM orbitals χ jσ(r, t) at each time step, since a173

small numerical error incurred at t′ will be quickly amplified at t > t′, resulting in large errors174

in the xc force term, F(t)
σ in Eq. (9), which involves second-order derivatives of EM orbitals.175

To this end, an efficient modified exponential time-differencing (ETD) integration scheme [55,176

56], in conjunction with the Chebychev expansion [57] for propagation of the KS orbitals , is177

adopted to simulate the memory loss when solving the exact-exchange only TDOEP equation and178

to control unwanted error accumulation when solving Eq. (9) for the time-dependent EM orbitals179

(see Supplemental Material for the details [58]).180
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FIG. 1. Comparison between the TDOEP, TDKLI and LHXO approximations. In TDOEP simulations,

we choose ∆t = 0.001 for the time step and τ = 2 for the memory loss in the modified ETD integration

scheme. The external field is a sine square pulse with frequency ω = 0.1, 0.2 (upper, lower panels) and

length T = 400. The left-hand side is the resulting the time-dependent dipole, and the right-hand side shows

the net xc force.

As an illustration, we consider a one-dimensional chain of hydrogen atoms in the presence of181

an external sine-square pulse, using a model Hamiltonian with the exact-exchange functional [37].182

Figure (1) shows that time-dependent dipole and the net xc force, defined as
∫
ρ(x, t)∇vxc(x, t) dx,183

corresponding to various approximated vxcσ. For the external field with a low frequency, the184

calculated dipole moments (upper-left panel) for TDOEP and TDKLI are seen to be very similar,185

justifying the adiabatic approximation. However, by doubling the frequency of the external field186

(ω = 0.1 → 0.2), the discrepancy in the calculated dipole moments (lower-left panel) is found187

to be quite large at later times (i.e., t > 200 a.u.). For both frequencies, the dipole moments for188

the LHXO approximation, which is a non-adiabatic approach, are seen to be close to those for the189

TDOEP. It is also found that in general the TDOEP results in smaller and slower dipole oscillation190
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than the TDKLI and the LHXO do. In a previous TDCDFT study of electron liquid in extended191

systems, it was shown that the post-ALDA correction makes deformation of the electron density192

less likely [44]. This non-adiabatic feature is also observed in our TDOEP simulations. The right193

panels of Fig. (1) show that the zero-force theorem is satisfied in both the TDOEP and LHXO194

schemes, whereas the violation of the zero-force theorem in TDKLI causes unphysical dipole195

oscillation in the end of the laser pulse.196

In summary, we have formulated an exact, Sturm-Liouville-type, time-local TDOEP equation197

for orbital-dependent xc functionals in terms of time-dependent Kohn-Sham and effective mem-198

ory orbitals. The many-electron dynamics of a hydrogen chain has been successfully solved to199

show the applicability of the time-local TDOEP equation. The numerical simulations show that200

the time-local TDOEP rigorously obeys the zero-force theorem . This new reformulation is in-201

tended to expedite the construction of the TDOEP in real-time and to facilitate studies on various202

orbital-dependent functionals beyond the adiabatic approximation. Finally, the time-local TDOEP203

equation in the hydrodynamic context can be readily extended to include both scalar and vector204

potentials.205
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