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Abstract

A longstanding challenge in time-dependent density functional theory is to efficiently solve the exact
time-dependent optimized effective potential (TDOEP) integral equation derived from orbital-dependent
functionals, especially for the study of non-adiabatic dynamics in time-dependent external fields. In this
letter, we formulate a completely equivalent time-local TDOEP equation that admits a unique real-time
solution in terms of time-dependent Kohn-Sham and effective memory orbitals. The time-local formulation
is numerically implemented, with incorporation of exponential memory loss to address the unaccounted
for correlation component in the exact-exchange only functional, to enable study of the many-electron
dynamics of a one-dimensional hydrogen chain. It is shown that the long time behavior of the electric

dipole converges correctly and the zero-force theorem is fulfilled in the current implementation.
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Time-dependent density functional theory (TDDFT) introduced in 1984 [1] is not only for-
mally exact, but also computationally advantageous when dealing with many-electron dynamics
in time-dependent external fields [2, 3]. Extensive numerical simulations based on TDDFT have
been performed to study high harmonic generation and ultrafast spectroscopy in attosecond sci-
ence [4], electronic excited states in optical materials and in photochemistry [5], and excited-state
electron-ion dynamics in biological systems [6]. Furthermore, the real-time TDDFT in the con-
text of quantum optimal control theory also opens up the possibility of manipulating interacting
quantum systems [7]. Recently, TDDFT has been extended to explore, for instance, the Kondo
effect [8], many-electron systems interacting with cavity photons [9], thermoelectric phenomena
[10], electrical currents induced by ultrafast laser excitation [11], ion-material collisions [12], and

laser-induced interlayer in layered materials [13].

In spite of a plethora of successful applications of TDDFT, the exact form of the exchange-
correlation (xc) potential has defied efforts seeking its discovery, and time-dependent xc potentials
obtained directly from the adiabatic extension of approximate density-dependent functionals, such
as LDA [14] and GGA [15], suffer from several significant drawbacks including (1) the existence
of an undesirable Hartree self-interaction, (2) the absence of the intrinsic derivative discontinu-
ity, and (3) the lack of a proper memory effect [16]. A promising approach to overcome these
drawbacks is through the use of functionals that utilize Kohn-Sham (KS) orbitals ¢j,(r,?) in-
stead of the density p(r,?) [17-19]. For example, the exact-exchange functional is free of the
Hartree self-interaction error and leads to the correct —1/r asymptotic behavior for finite systems
[20]. In addition, orbital-dependent functionals naturally incorporate the derivative discontinuity
[21, 22]. Furthermore, orbital-dependent functionals make possible systematic construction of
the exchange-correlation potential via either the Keldysh perturbation expansion [23] or the time-
dependent generalization of the Gorling-Levy perturbation expansion [24]. It will be shown in this

letter that the memory effect is inherent in the orbital-dependent functional approach.

To incorporate orbital-dependent functionals in time-dependent Kohn-Sham framework, a
time-dependent optimized-effective potential (TDOEP) integral equation needs to be solved effi-
ciently and accurately for orbital-independent multiplicative potentials [25, 26]. Although con-
struction of TDOEP is an important undertaking in TDDFT [27-29], the full TDOEP integral
equation thus far has been only implemented in exact-exchange for a quasi-one-dimensional
quantum well [30] because the equation is highly nonlocal both temporally and spatially [3, 31].
Many DFT and TDDFT calculations have adopted the Krieger-Li-Iafrate (KLI) approximation due
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to its simplicity [25, 32], despite the KLI approximation overestimating the polarizability and hy-
perpolarizability even in static cases [33, 34]. A straightforward application of the time-dependent
KLI approximation to molecules also produced inadequate short bond lengths and unexpected
high dissociation energies [35]. Moreover, Mundt and Kiimmel showed that the time-dependent
KLI approximation in the exact-exchange functional violates both the zero-force theorem and en-
ergy conservation [36]. Recently, it was shown that an exact solution of the TDOEP equation for
a quasi-one-dimensional model quantum well problem has much richer temporal charge-density
oscillation features in the time-dependent dipole moment than do solutions of the time-dependent
KLI and the adiabatic approximation [30]. These findings clearly indicate the need for a full, yet
efficient solution beyond the KLI approximation.

An efficient and stable method for solving the exact TDOEP has remained elusive [25, 30, 37].
The step-by-step approach proposed by Mundt and Kiimmel was numerically unstable [30, 31,
37]. The global self-consistency scheme proposed by Wijewardane and Ullrich [30], in which
the nonlinear TDOEP integral was solved iteratively, is computationally too expensive for two-
and three-dimensional problems. In order to circumvent these difficulties, this letter derives an
equivalent Sturm-Liouville-type time-local TDOEP equation that is amenable to a direct solution
in real time.

Much effort has gone into the construction of the xc potential containing the memory effect,
including time-dependent current density functional theory (TDCDFT) approach, which utilizes
both the time-dependent current density and time-dependent density [38—44], and time-dependent
deformation functional theory (TDDefFT) approach, which reformulates TDDFT in a co-moving
Lagrangian reference frame [44—46]. In these approaches, stress-like tensors in the hydrodynamic
context were formulated to incorporate the xc scalar potential as well as the xc vector potential
in the most general case. In this letter, it is shown that the time-local TDOEP equation can be
cast in terms of a stress-like tensor, which incorporates the non-adiabatic effect in time-dependent
effective memory orbitals (orbital shifts in Ref. [37]) and the orbital-dependent current density.

The time-dependent xc potential, v, (T, 1), associated with orbital-dependent functionals satis-

fies a self-consistent nonlinear integral equation [25, 26]

No ot oo
—i Z f dr’ fd3r/g0j-(,(r, 1) Z i (X, ) (X, 1)
=1 Ve k=1
X [Vacor (0 ) = 16, (0 )| @i (0, 1) + .. = 0, (1)
where the subscript o~ denotes electron spin, ¢,(r, 7) is the time-dependent KS orbital satisfying
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the time-dependent KS equation,

0
— —H, g, (r,1) =0, 2
[l Yy ] @) (X, 1) (2)
with H,, = —%2 +v(r, 1) +vy(r, 1)+ v, (1, ) being the time-dependent KS Hamiltonian consisting of
the external potential v(r, f), Hartree potential vy(r, f), and exchange-correlation potential v,.,(r, ),

and u,.;-(r, ) is defined as

1 5Axc [{‘1010'}]

) 3
& (0.1) 605 (r.1) ®

uxcja(r’ l) =

which involves the functional derivative of the exchange-correlation action functional A,. with
respect to j,(r,7) . We remark that there have been discussions recently regarding whether the
action-integral functional can be used to establish the equation of motion for time-dependent quan-
tum systems at the density-functional level [47, 48]. Nonetheless, we emphasize that the TDOEP
method is an exact procedure to construct an optimized effective time-dependent xc potential from
an orbital-dependent action functional taking into account the proper non-adiabatic (memory) ef-
fect in the time-dependent KS equation, Eq. (2).
Following Ref. [37], Eq. (1) is rewritten in a compact form as

Ny

D @, 1) + . = go(r,1), )
j=1

in terms of the time-dependent KS orbitals ¢ (r, ) and the time-dependent effective memory (EM)

orbitals y j(r, r) defined as

t o0
on'(r’ t) = _lf dt/ fd3r/ Z 90ku-(1', t)(ng-(rlv t/){vxco'(r” t’)
- k=1

o 0 1) = [Pair0) = oy ()] i1 (5)
where
Vrcjor(t) = f @l (0, e (X, D@ (0, D r (6)
iyejor (D) = f @ (0, Dl i (0, D (0, 1) dr (7)
2o(r, 1) = zNZ ), 1) f m |tacjo(t)) = ()] 8)

J=1
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It can be readily shown that each EM orbital y - (r,?) satisfies the time-dependent EM orbital

equation,

9 *
[la‘ - HU']XjO'(r’ 1) :{ngo—(l’, - uxcjfT(r’ )

- ‘_}xcja'(t) - ﬁ;c 'o-(t) ()Dj(r(r’ t)- (9)
J

The time-dependent EM orbital y ;-(r, 1) defined by Eq. (5) is formally identical to the orbital shift
coined by Mundt and Kiimmel [37]; however, in this work, it is specifically designated to manifest
the memory effect in the time-local TDOEP equation, see Egs. (18) and (20) below and the corre-
sponding discussion. In the static limit, y;-(r, ) can be written as yj,(r, ) = x-(r,0) exp[—ie;t],
and Eq. (4) reduces to the static OEP integral equation [37, 49]. For a system prepared in a ground
state at t = 0, the initial KS orbitals ¢,(r,0), EM orbitals y ,(r, 0), and xc potential v,.,(r, 0) are
obtained by solving the corresponding static OEP [50]. The time-dependent EM orbitals y;,(r, 1)
are endowed with the memory effect of the TDOEP as shown in Eq. (5) and (9). It will be further
shown that the KS orbitals together with the EM orbitals are sufficient to determine the TDOEP
directly at each instant 7 using a Sturm-Liouville-type equation.

A large class of the orbital-dependent xc actions A,., see Ref. [3, 19], can be written in
the form of either Ay, = ;% [ [ [ Fleiw(r, )@} (x,t) ¢} (1) o1 (0', )] d°r dr dt’ or
A, [{l@ir(r, )*}], including the widely used exact-exchange functional [30, 37]

L Mo @i (0, )i (', 1) (0, )y, (X, 1)
Aima[{%a'}]:_iz Zf dt/fd3rfd3r/ J ki J k , (10)

_
o jk=1%Y" |I' I'l

resulting in the following relations:

SA
—X o, 0dr-cc.=0, (11)
f S,
and
6Axc
— X _o(r,)—cc.=0. (12)
2. o,

J
Eq. (11) leads to a real function it -(¢), which in turn yields the equality g,(r,?) = 0 [27], and
Eq. (12) results in the equality ;i ;o (T, 1) | o (T, D> + c.c. = 0. Without loss of generality, we
only consider the TDOEP in exchange-correlation functionals satisfying Eq. (11) and Eq. (12) in
the following analysis. Moreover, to facilitate the presentation, we adopt the abbreviated notation

Cic = Qic(X,1), Xjo = Xjo(X, 1), Vicg = Vieo (X, 1) and Uy jr = Uy jo(r, 1) whenever it is unambiguous.
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It has been pointed out that the Volterra-like integral TDOEP equation, Eq. (1), does not possess
a nonzero upper limit at ¢ = ¢, making it difficult to solve for v,.,(r, 1), step by step, while the
time-dependent KS orbitals propagate in time domain [30]. This predicament can be overcome
by further differentiating Eq. (1), or equivalently Eq. (4), with respect to time until reaching an
equation that can explicitly reveal the intended v,.,(r, f). To this end, by differentiating Eq. (4)

with respect to time,

+c.c.=0, (13)

No
2 | 2 @i Do)
j=1

and using the time-dependent KS equation and the time-dependent EM orbital equation, we derive

the equation

No
Z [i (Flggoj-g))(jg — igoj-a (I-AIUXJ-U)] +cc. =0, (14)
=1

which can be written succinctly as

V-I,=0, (15)

where T, analogous to the probability current, is defined as

Ny .

T, = Zl Vgojg Xjor = ¥l (V)(j(,-)]+c.c. (16)

J=1

Introducing Eq. (5) and Eq. (16) into Eq. (15) leads to a non-linear integro-differential equation
for the function v,.,(r,f). Numerically solving ¢j, and v,.,, which are required to satisfy the
time-dependent KS equation Eq. (2) and the non-linear integro-differential equation Eq. (15)
concurrently, poses a computationally daunting task for two- and three- dimensional problems. To

circumvent this difficulty, we first differentiate Eq. (15) with respect to time to obtain the relation,

V. Z i { Vo, &) xio + (Vi) (B o)
- (8t Spj'a) (VXjrr) - Soj'(r (Vaz)(j(r)] } +cc.=0. (17)

By invoking Eq. (2), Eq. (4), Eq. (9), and the equality g,(r,?) = 0, Eq. (17) can be cast into a
real-time TDOEP equation,

V. (pa'Vcha') = {a’ s (18)
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for v,.,(r, t), where

No

to= 3| (o6 2063 (o1)

J=1
+()0>]k'0' (AAXjO') + (AQO;O') (ujccj(f"ojo')
0% 8 (10 0i0)] } fee. (19)
and A = —V?z. Eq. (18) is a Sturm-Liouville-type equation that possesses a unique solution when
subject to appropriate physical boundary conditions [51, 52]. Furthermore, we differentiate Eq.

(4) with respect to r to yield the relation V> (2751 CigXjo + c.c.) = 0. With the aid of this relation,

Eq. (18) can also be written in a compact tensor form,
V- (pe Vi) = =V - (FY + FY), (20)
which contains two xc force terms

F® = O\ Topy (21)

ou
v=1

I
w

and
No

P2
Fo =" [i o (tacjo—c.c.) = "’012" | By(tacsor + c.c.)] : (22)

J=1

where the time-dependent kinetic-like stress tensor

o

|0,25,) @ o) + By, B o) + c.c.| (23)

Touv

| =

J=1

and the orbital-dependent current density
. l * *
jion = 5|05 )0ir — €50 Bui0). (24)

with u, v = 1,2, 3 labeling the Cartesian coordinate X = (x1, x», x3), and 9, denotes d/0x,,. Finally,
we remark that it is in principle possible to introduce a new orthogonal coordinate system x’ =
x'(x) corresponding to the Jacobian matrix J;; = 9x!/0x; = [p(X, t)]“(Sij, as well as subject to the

condition x’(x = 0) = 0, such that Eq. (18) can be rewritten as a Poisson-like equation
Vo (X, 1) = (X, 1), (25)

where £ (X', 1) = p, (X, 1){-(X", ) and V' denotes the differential operator with respect to the new

coordinate x’.
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It is instructive that the TDOEP equation, Eq. (20), can be cast in a hydrodynamic context as
in the other non-adiabatic approaches [39—-46], showing that the nonadiabatic dynamics is mani-
fested in the time-dependent kinetic-like stress tensor 7, and orbital-dependent current density j jc-.
In addition, Eq. (22) shows two different aspects of the non-locality of the exchange-correction
potential, one to do with the orbital-dependent current density j - and the other with the orbital-
dependent density |¢;,|>. These observations suggest that Eq. (20) may be amenable to further
development in non-adiabatic xc potentials as well as orbital-dependent current density function-
als. Moreover, we remark that Ruggenthaler and Bauer have found an local Hatree-exchange only
(LHXO) approximation for the effective potential corresponding to the exact Hartree-exchange
forces, while the correlation part of the interacting wave function is ignored [53]. Interestingly,
our time-local TDOEP equation reduces to the LHXO approximation when omitting the EM or-
bitals, resulting in FY = 0in Eq. (20).

Finally, it is important to point out that the time-local equation, Eq. (20), can be solved in
parallel to Eqgs. (2) and (9), respectively, for the KS orbitals ¢;(r, 7) and the EM orbitals y (r, 7).
In contrast, solving the non-linear, nonlocal integral equation, Eq. (1) would require all past
dynamical information about the KS orbitals. In this regard, the instantaneous EM orbital y j(r, 1)
effectively carries all memory of the evolving system. Within the framework of time-dependent
EM orbitals, the time-dependent xc potential is considered as a functional of the instantaneous KS
and EM orbitals, analogous to the Hartree potential as a functional of the occupied KS orbitals.
From a numerical perspective, solving the time-local TDOEP equation also benefits from avoiding
the storage of the entire history of time-dependent KS orbitals ¢,(r, ) and v, (r, ") forall ¥ < 1.
It is remarked that the exact-exchange only TDOEP equation does not contain the memory loss
associated with the unaccounted for correlation component, which is an essential feature in post-
ALDA TDDFT [54]. In addition, solving the highly nonlinear Eqgs. (9) and (20) concomitantly
would require extremely accurate time-dependent EM orbitals y -(r, 7) at each time step, since a
small numerical error incurred at # will be quickly amplified at + > ¢, resulting in large errors
in the xc force term, Fﬁﬁ) in Eq. (9), which involves second-order derivatives of EM orbitals.
To this end, an efficient modified exponential time-differencing (ETD) integration scheme [55,
56], in conjunction with the Chebychev expansion [57] for propagation of the KS orbitals , is
adopted to simulate the memory loss when solving the exact-exchange only TDOEP equation and
to control unwanted error accumulation when solving Eq. (9) for the time-dependent EM orbitals

(see Supplemental Material for the details [58]).
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FIG. 1. Comparison between the TDOEP, TDKLI and LHXO approximations. In TDOEP simulations,
we choose At = 0.001 for the time step and 7 = 2 for the memory loss in the modified ETD integration
scheme. The external field is a sine square pulse with frequency w = 0.1,0.2 (upper, lower panels) and
length T = 400. The left-hand side is the resulting the time-dependent dipole, and the right-hand side shows

the net xc force.

As an illustration, we consider a one-dimensional chain of hydrogen atoms in the presence of
an external sine-square pulse, using a model Hamiltonian with the exact-exchange functional [37].
Figure (1) shows that time-dependent dipole and the net xc force, defined as f p(x, Vv, (x, 1) dx,
corresponding to various approximated v,.,. For the external field with a low frequency, the
calculated dipole moments (upper-left panel) for TDOEP and TDKLI are seen to be very similar,
justifying the adiabatic approximation. However, by doubling the frequency of the external field
(w = 0.1 — 0.2), the discrepancy in the calculated dipole moments (lower-left panel) is found
to be quite large at later times (i.e., # > 200 a.u.). For both frequencies, the dipole moments for
the LHXO approximation, which is a non-adiabatic approach, are seen to be close to those for the

TDOERP. It is also found that in general the TDOEP results in smaller and slower dipole oscillation
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than the TDKLI and the LHXO do. In a previous TDCDFT study of electron liquid in extended
systems, it was shown that the post-ALDA correction makes deformation of the electron density
less likely [44]. This non-adiabatic feature is also observed in our TDOEP simulations. The right
panels of Fig. (1) show that the zero-force theorem is satisfied in both the TDOEP and LHXO
schemes, whereas the violation of the zero-force theorem in TDKLI causes unphysical dipole
oscillation in the end of the laser pulse.

In summary, we have formulated an exact, Sturm-Liouville-type, time-local TDOEP equation
for orbital-dependent xc functionals in terms of time-dependent Kohn-Sham and effective mem-
ory orbitals. The many-electron dynamics of a hydrogen chain has been successfully solved to
show the applicability of the time-local TDOEP equation. The numerical simulations show that
the time-local TDOEP rigorously obeys the zero-force theorem . This new reformulation is in-
tended to expedite the construction of the TDOEP in real-time and to facilitate studies on various
orbital-dependent functionals beyond the adiabatic approximation. Finally, the time-local TDOEP
equation in the hydrodynamic context can be readily extended to include both scalar and vector

potentials.
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