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Recent diffraction experiments on metallic glasses have unveiled an unexpected non-cubic scaling 14 

law between density and average interatomic distance, which lead to the speculations on the presence of 15 

fractal glass order. Using X-ray tomography we identify here a similar non-cubic scaling law in 16 

disordered granular packing of spherical particles. We find that the scaling law is directly related to the 17 

contact neighbors within first nearest neighbor shell, and therefore is closely connected to the 18 

phenomenon of jamming. The seemingly universal scaling exponent around 2.5 arises due to the isostatic 19 

condition with contact number around 6, and we argue that the exponent should not be universal. 20 

 21 

PACS number: 45.70. -n, 81.05.Kf, 87.59. -e 22 

 23 

The origin of dynamic arrest and mechanical rigidity in amorphous materials remains one of the 24 

important unresolved questions in condensed matter physics [1-3]. Whether it has a structural origin or is 25 

just a dynamic phenomenon remains controversial [4,5]. For metallic glasses, it has long been speculated 26 

that dense local packing structures of short-range order serve as the building blocks in these systems [6]. 27 

However, how these local structures can be extended to medium or large scales remains at present a 28 

mystery due to the existence of geometric frustration or intrinsic chemical disorder [7-9]. Recently, it has 29 

been proposed that metallic glasses possess a medium range fractal order, which could rationalize the 30 



commonly observed non-cubic scaling law between the position of the first diffraction peak and the bulk 31 

density found in neutron and X-ray scattering experiments on these systems [10-13]. The first diffraction 32 

peak position is usually associated with the largest inter-plane distance in crystals or the typical nearest 33 

neighbor distance in liquids [14-16], and it shows in these systems a power law of exponent 3 as a 34 

function of the bulk density since they are three-dimensional by nature. It is therefore surprising that the 35 

scaling exponent obtained for metallic glasses under density change induced by either pressure or 36 

composition tuning has instead values that are between 2.3 and 2.5 [10-13]. The origin of this anomalous 37 

scaling law has been attributed to the presence of a regular or statistical fractal network formed by glass 38 

order [6,10,12]. In this picture, the atoms move affinely relative to each other under deformation, and their 39 

coherent scattering intensity yields the non-cubic law. However, real metallic glasses are in fact quite 40 

compact, while a large-scale fractal structure has zero mass density. Therefore, in order for this picture to 41 

be valid, one requires that a substantial amount of atoms exist within the fractal interstitials which do not 42 

contribute coherently to the sharp scattering peaks [10]. Another possibility is that the fractal structure 43 

only exists up to a finite length scale, above which the system is still homogeneous and three-dimensional 44 

[6,12]. These explanations are appealing since they naturally refer to a fractal medium-range glass order, 45 

such as percolating icosahedral structures, for metallic glasses, and therefore explain how glass order 46 

extends in space. However, the interpretation of the existence of the non-cubic law based on the fractal 47 

picture is not without controversy [17], and sometimes one also find deviations from the non-cubic law 48 

[18,19]. 49 

In this work, we provide microscopic insight to this problem by studying the three-dimensional 50 

packing of spherical granular particles, which is a prototypical hard-sphere glass former and has long been 51 

considered as a structural model for metallic glasses [20-22]. We identify a non-cubic scaling law in our 52 

system, and provide evidences that its origin is local, i.e., without resorting to any fractal structures. 53 

Instead, it results from a complex structural evolution of the first-shell neighbors when the packing 54 

fraction varies, controlled mainly by the contact neighbors as required by mechanical stability, and the 55 

global behavior is a simple statistical average of the local ones. Therefore, such phenomenon is directly 56 



related to jamming phenomenon and might be universal near the jamming criticality [23,24]. In the 57 

experiment, we used synchrotron X-ray CT techniques to obtain the packing structures of packing with a 58 

wide range of packing fractions Φ  [25-34] (see Supplemental Material [35]). In the following, we use the 59 

average particle diameter as a unit of length. 60 

The investigation of the non-cubic law can be carried out in both reciprocal and real space. First, we 61 

followed the previous scattering experiments on metallic glasses, and studied the structural factor of the 62 

packing to investigate the evolution of the peak positions versus Φ . The structure factor is calculated 63 

according to ( )
2

1 ji

j

S q e
N

− ⋅= ∑ q r
, where N  is the number of particles in the probed volume, and shown 64 

in Fig. 1(a). The position iq  of thi  peak is obtained by fitting the peak to a Gaussian function. Previous 65 

studies on metallic glasses report scaling behaviors of ( )qD i
iqΦ ∝ , with a scaling exponent qD  varies 66 

between 3 and 2.5 for the first and second peaks [12]. In our system we find however that, 2q  does not 67 

change in the whole investigated Φ  range, which corresponding to a very large ( )2qD , and the analysis 68 

on 1q  yields a ( )1qD  which is clearly larger than 3 [Fig. 1(b, c)]. Since the interpretation of ( )S q  is not 69 

completely trivial, we have also calculated the pair correlation function ( )g r  [Fig. 1(d)]. Similar to 70 

( )S q , we obtain the peak position ip  of the thi  peak of ( )g r  by a Gaussian function fit, and 71 

determine the scaling behavior ( )pD i
ip−Φ ∝ . Note that 1 1p =  for all values of Φ  since the distances 72 

between contact neighbors are always 1.0 which yields ( )1pD = ∞ . ( )pD i  decreases from about 5.2 for 73 

the second peak to 3.1 for the fourth peak, indicating a cross-over from an anomalous scaling (weak Φ -74 

dependence) at short distances to a normal Φ -dependence on larger length scales [Fig. 1(e-g)]. At first 75 

sight the rather different behaviors in both reciprocal and real spaces with respect to the findings in 76 

metallic glass systems look surprising. However, we notice that extracting the dimension of a fractal 77 



structure from the position of the peak of either ( )S q  or ( )g r  is difficult because of the ambiguous and 78 

incomplete information they carry [36,37] (see Supplemental Material [35]). 79 

To avoid such ambiguity and understand the essence of non-cubic law on the level of the particles, 80 

we develop a more suitable method to define the length scale associated with a fixed number of particle, 81 

and then to determine its scaling behavior with Φ . For this, we first sort for each particle its distances to 82 

all of its neighbors in ascending order, with the thn  nearest distance being nr , and then calculate the 83 

average neighbor distance of the nearest n  neighbors as 
1

1 n

n i
i

R r
n =

= ∑ . We find that for all n  the average 84 

distance nR  follows a scaling relationship, i.e., 
( )RD n

nR −Φ ∝  [see Fig. 2(a) for 13n = ], with an 85 

exponent ( )RD n  that shows a complex dependence on n  i.e., on the length scale considered. In Fig. 86 

2(b) we plot ( )RD n  as a function of nr , where nr  is the average distance of the thn  nearest 87 

neighbor, which grows for large n  like 1 3
nr n∝ . Surprisingly we find that ( )R nD r  shows an 88 

oscillatory behavior that is very similar to the one of ( )g r , and reaches its minimum value 89 

( )13 2.5RD ≈  at 13 1.37r ≈ , which is close to the location of the first valley in ( )g r  normally 90 

considered to be first-shell boundary [Fig. 2(b)]. Thus we see that the scaling exponent of 2.5 found in a 91 

series of metallic glasses is reproduced here in our granular system as the minimal value of ( )RD n . The 92 

figure also shows that for large n , ( )RD n  converges towards the expected value of 3.0. 93 

The similarity of ( )R nD r  and ( )g r  suggests that there exists a close connection between the shell 94 

structure of granular packing and the unusual scaling behavior. To elucidate this better, we define 95 

,shell NR  as the average distance between the central particle and the particles in the thN  shell, which 96 

are between the ( )1 thN −  and the thN  valleys of ( )g r , and determine how this distance depends on 97 



Φ : 
( )

,
shellD N

shell NR
−

Φ ∝ . Thus ,shell NR  is a coarse-grained quantity of nr . We find that ( )1 2.5shellD ≈  98 

and ( )shellD N  evolves towards 3.0 for large N  [left inset of Fig. 2(b)], a result that agrees with 99 

previous simulation works on metallic glasses in which the non-cubic scaling law are observed only up to 100 

a finite length scale [12]. 101 

The oscillatory behavior of ( )RD n  shows that neighbors at different distances undergo non-uniform 102 

displacements with respect to the central particle when Φ  changes. We thus can single out their 103 

contributions to ( )RD n  by investigating the behavior of the thn  nearest neighbors individually, i.e., the 104 

scaling relationship of 
( )rD n

nr
−Φ ∝  [right inset of Fig 2(b)]. If all particles change their distances to the 105 

central particle by the same rate when Φ  varies, ( )rD n  should equal to 3 regardless of n , while 106 

( ) ( )3rD n < >  corresponds to an average radial displacement larger (smaller) than a homogeneous one. 107 

Within the first shell, we find that ( ) 3rD n >  for [ ]1,6n∈  and ( ) 3rD n <  for [ ]7,13n∈ , and their 108 

overall behavior gives rise to the 2.5 scaling law. This behavior gives us a first hint of how the non-cubic 109 

law emerges, which results from the complex non-uniform structural evolution mainly within the first 110 

shell as Φ  changes. 111 

To obtain a more specific understanding of the structural origin of the non-cubic law, we determine 112 

the Φ -dependence of the local structure within the first shell. For this, we divide the neighbors in the first 113 

shell of each particle into two groups. The nearest six ones, i.e., those with ( ) 3rD n > , and the rest. This 114 

classification basically corresponds to the division of quasi-contact and non-contact neighbors owing to 115 

the isostatic requirement for mechanical stable granular packings. For each group, we calculate the radial 116 

distribution function [Fig. 3(a, b)]. The probability distribution function (PDF) of neighbor-to-center 117 

distance r  for particles with [ ]1,6n∈  are basically independent of Φ , while the ones for particles with 118 

[ ]7,13n∈  show a considerable shift of weight from large to small r  as Φ  increases. This observation 119 



thus explains why for [ ]1,6n∈  the exponent ( )rD n  is large, i.e., no Φ -dependence of nr , whereas 120 

for [ ]7,13n∈  it is small, i.e., strong Φ -dependence of nr . We also calculate a three point correlation 121 

function that gives structural information not accessible from scattering experiments. For this, we measure 122 

the angle θ  spanned by the central particle and any two of its neighbors. The distribution of θ  for 123 

[ ]1,6n∈  shows a peak at 60°  that becomes sharper with increasing Φ  [Fig. 3(c)], which suggests that 124 

these particles tend to aggregate to form regular triangles which can further lead to the formation of quasi-125 

regular tetrahedral structures [33,34]. In contrast to this, the distribution of θ  for [ ]7,13n∈  does not 126 

show a significant change apart from a slight change in the peak positions [Fig. 3(d)]. The described 127 

complex non-affine structural evolution is consistent with the previous observation that the average shape 128 

of the Voronoi cells changes from being anisotropic to more isotropic as Φ  increases [33,38,39]. It is this 129 

non-affine deformation which induces the deviation from a cubic law between the local packing fraction 130 

φ  of the Voronoi cell defined by the first-shell neighbors and their average neighbor-to-center distance 131 

13R . (We define φ  as the ratio between the volumes of each particle and its Voronoi cell.) Together with 132 

the fact that the average φ  is very close to the global Φ , the non-cubic law between Φ  and 13R  133 

naturally emerges. Thus above structural analysis supports the local explanation of the non-cubic law 134 

irrespective of structural information at medium or long-ranges. 135 

To further justify this local explanation, we make a scatter plot of φ  v.s. 13R , and fit the scatter plot 136 

using 13
dRφ −∝  to capture the average behavior (Fig. 4). The scaling exponent can essentially be 137 

evaluated by ( ) ( )13log logd Rσ φ σ= ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ , where ( )σ ⋅  represents the standard deviation. 138 

Interestingly, d  shows an increasing trend from about 2.6 to 2.9 with decreasing Φ  (inset of Fig. 4), 139 

which indicates that a local version of the same non-cubic law holds, suggesting that a low- Φ  packing 140 

with more liquid-like structure, i.e., smaller contact numbers, has an exponent d  closer to 3. This subtle 141 



trend is hidden if one fits the global quantities Φ  versus 13R  to obtain a single ( )13RD . Furthermore, 142 

as shown in Fig. 4, the relationship between Φ  and 13R  is consistent with the overall local trends, 143 

suggesting that the global scaling law is simply an average manifestation of the local non-cubic law 144 

between φ  and 13R  with gradually varying d  values. 145 

In the following, we demonstrate that the exponent is closely related to the existence of contact 146 

neighbors as required by mechanical stability in granular packing [24,40,41], and is a phenomenon 147 

connected to jamming, instead of the fractal glass order as we set out to relate in the first place [34]. This 148 

finding is not totally surprising as we recall that even in the work which tried to relate the non-cubic 149 

exponent to a presumed fractal glass order in metallic glasses, the anomalous scaling is observed only far 150 

below the glass transition temperature, and the potential relationship to jamming is alluded [12]. 151 

To illustrate this point, we investigate the dependency of the non-cubic exponents on contact number. 152 

Two particles are considered to be in quasi-contact with each other if their surfaces are closer than a cut-153 

off distance around 0.01 of the particle diameter [27,31]. We use quasi-contact to identify very close 154 

neighbors, which are not necessarily in actual geometric or mechanical contact. In Fig. 5(a), we group the 155 

particles based on their local quasi-contact number z . The conditional probability distribution of both φ  156 

and 13R  shift for increasing z  values. In each group of particles with fixed z , the correlation between φ  157 

and 13R  can be described by 13
zdRφ −∝ , and zd  is again evaluated as the ratio between the standard 158 

variances of ( )log φ  and ( )13log R  for particles with given z . As expected, zd  depends on z , and 159 

increases towards 3 for decreasing z . Furthermore, it’s intriguing to notice that the relationships between 160 

zd  and z  are almost identical for all packing with different Φ  [Fig. 5(b)], further confirming that it is a 161 

local property. The universal behavior of zd  can therefore describe the Φ -dependence of d , even if zd  162 

is a bit smaller than d . As we show in the Supplemental Material, this difference originates from the 163 

complex inter-dependency between φ , 13R  and z . 164 



In conclusion, we give a local explanation for the origin of a non-cubic law in granular hard-sphere 165 

systems, and find it to be related to the phenomenon of jamming instead of a fractal glass structure. 166 

Although we do observe in our system the non-cubic scaling laws, the exponents we extract for the peak 167 

positions in ( )S q  and ( )g r  do not match the ones found in metallic glasses. Thus, our work makes it 168 

clear that the non-cubic law might not be universal for both granular and metallic glass systems. For 169 

granular systems, the non-universal behavior is presumably due to the presence of friction, which moves 170 

system away from the isostatic jamming point. For metallic glasses, since there must be other important 171 

parameters (stiffness of potential, covalent bonding, etc.), which go beyond the hard-sphere picture and 172 

thus will influence this exponent [22]. Also, the rather high temperature at which the scaling law is 173 

normally probed in metallic glasses could also influence the exponent. Nevertheless, we believe that a 174 

very similar physical mechanism is at work for both systems, since to the first approximation metallic 175 

glasses can be described as hard-sphere systems. It is possible in the limit of the isostatic jamming point 176 

(with contact number of 6), a universal scaling law of 2.5 indeed exists. This brings us the attention to 177 

recent advances in the theory of hard-sphere glasses of a new type of glass transition, the Gardner 178 

transition [24,42,43]. This transition happens by breaking the glass metabasins into subbasins by forming 179 

a marginal glass. The length scale of this transition is close to that investigated in the current work. It is 180 

therefore possible that the scaling exponent identified here is a new structural property of the marginal 181 

glass phase or jamming transition, in addition to the cage order parameter or vibration motions normally 182 

studied [44]. It is therefore interesting to probe this connection in the future. 183 
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FIG. 1. (a) Structure factors and (d) pair correlation functions for four different packing fractions Φ  (see 252 

legend). The data are shifted vertically for clarity. Solid lines are Gaussian fits to the peaks. Dashed lines 253 

mark the peak positions. (b, c) Peak positions of the first and second peak of ( )S q  for all packing. The 254 

size of the error-bar of Φ  is smaller than the symbol size. The dashed line in (b) represents 3
1qΦ ∝ . (e-g) 255 

Peak positions of the second to fourth peak of ( )g r . The solid lines is the fit of the form ( )pD i
ip−Φ ∝ , 256 

with ( )2 5.2 0.5pD = ± , ( )3 4.1 0.5pD = ±  and ( )4 3.1 0.3pD = ± . Different symbols in (b, c, e-g) 257 

represents three different packing preparation protocols as explained in Fig. 2(a). 258 

  259 



 260 

FIG. 2. (a) Φ  versus 13R . Different symbols represent different packing preparation protocols: 261 

Tapping (circles), hopper (triangles) and flow pulse (diamonds). A clear non-cubic law can be identified 262 

through the fit 
( )13

13
RDR −Φ ∝  with ( )13 2.54 0.03RD = ±  (solid line) with a cubic law (dashed line) 263 

for comparison. (b) ( )RD n  versus nr  (symbols, left axis) and ( )g r  (line, right axis) for packing with 264 



0.634Φ = . The dashed line represents 3RD = . 13n =  and 54n =  are marked as the boundaries of 265 

the first two shells. Left inset: ( )shellD N  versus shell number N . Right inset: ( )rD n  versus nr . The 266 

dashed line represents 3rD = , and the background colors separate the different shells.  267 
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 270 

FIG.3. PDFs of neighbor-to-center distances r  (a, b) and angle θ  (c, d) for particles with [ ]1,6n∈  (a, 271 

c) and [ ]7,13n∈  (b, d) for four different packing fractions given in the legend. The inset in (c) is a 272 

zoom onto the peak at 60° . In (c, d), ( )sin 2θ  is a normalization factor. For the sake of comparison, 273 

we plot in each panel the PDF for the other group of particles (solid lines). Panels (b) and (d) also show a 274 

schematic picture of the definitions of r  and θ . 275 
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 277 

FIG.4. Scatter plot of φ  and 13R  for our densest (cross) and loosest packing (dot). The solid lines 278 

represent 13
dRφ −∝ , with 2.60 0.02d = ±  for 0.634Φ =  and 2.91 0.03d = ±  for 0.572Φ = . The 279 

global average values of Φ  and 13R  are also shown. Inset: d  as a function of Φ . 280 
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 282 

FIG.5. (a) Scatter plot of φ  and 13R  for particles of packing with 0.634Φ =  with different z . For 283 

clarity, only particles with 3,6,8,9z =  are colored and the rest ones are plotted in gray dots. The solid 284 



lines represent 13
zdRφ −∝ . Conditional PDFs of φ  (top axis) and 13R  (right axis) for different z  are also 285 

shown. (b) zd  as a function of z  for four different packing (left axis), and the probability distribution of 286 

z  for the same four packing (right axis). 287 


