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We study the remanent magnetization in antiferromagnetic, many-body localized quantum spin
chains, initialized in a fully magnetized state. Its long time limit is an order parameter for the
localization transition, which is readily accessible by standard experimental probes in magnets. We
analytically calculate its value in the strong-disorder regime exploiting the explicit construction of
quasi-local conserved quantities of the localized phase. We discuss analogies in cold atomic systems.

Introduction. The non-equilibrium dynamics in dis-
ordered, isolated quantum systems have been subject to
theoretical investigations ever since the notion of local-
ization was introduced in [1]. Spin systems in random
fields are prototypical models to analyze the disorder-
induced breakdown of thermalization: a large number of
numerical studies on disordered spin chains [2–13] has
provided evidence for a dynamical phase transition be-
tween a weak-disorder phase which thermalizes, and a
Many-Body Localized (MBL) phase in which excitations
do not diffuse, ergodicity is broken and local memory of
the initial conditions persists for infinite time [14–16].

Signatures of MBL are found in the properties of indi-
vidual many-body eigenstates: even highly excited eigen-
states exhibit area-law scaling of the bipartite entangle-
ment entropy [4, 7, 8, 17] and Poissonian level statis-
tics [2, 18, 19], both being incompatible with thermal-
ization [20–22]. Novel dynamical properties such as the
logarithmic spreading of entanglement have been ob-
served in direct simulations of the time evolution [3, 23].
This phenomenology arises due to an extensive set of
conserved operators whose local structure prevents both
transport and thermalization [24–29]. While mathemat-
ically rigorous results are available for certain localized
spin chains [28], the existence of such conserved quan-
tities, and thus of MBL, in dimensions d ≥ 2 is de-
bated [30].

The non-equilibrium physics of MBL systems has
been probed experimentally in artificial quantum systems
made of cold atomic gases [31, 32] and trapped ion sys-
tems [33], while an indirect signature via a strong sup-
pression of microwave absorption was found in electron-
glasses [34]. However, direct observations of MBL in the
solid state are still lacking.

In this work, we propose a readily observable con-
sequence of MBL in quantum magnets: the out-of-
equilibrium remanent magnetization that persists after
ferromagnetically polarizing an antiferromagnet whose
total magnetization is not conserved. As an example,
we consider an antiferromagnetic, anisotropic Heisenberg

spin-1/2 chain

H =
∑
k

(
hkσ

z
k −

∑
α=x,y,z

Jασ
α
k σ

α
k+1

)
(1)

subject to random fields hk along the easy axis. We as-
sume Jz < 0, as well as Jx 6= Jy to ensure the non-
conservation of the total magnetization. Such Hamilto-
nians can be realized, e.g., in Ising compounds with both
exchange and dipolar interactions. However, essentially
any sufficiently strongly disordered quantum antiferro-
magnet with non-conserved magnetization should exhibit
the same phenomenology as we describe below.

FIG. 1: Relaxation of the total magnetization from a fully
polarized initial state. The black curve is the stationary

value L−1 ∑
j m̂j : it vanishes (possibly

discontinuously [35, 36]) at the critical point separating the
MBL and delocalized phases (red point). It is non-analytic

for Jx/h� 1, cf. Eq. (13).

Consider the following protocol: First, the chain is
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fully polarized by a strong magnetic field [equilibrated
by a (very weak) coupling to a bath]. Then the field is
switched off at time t = 0 (cf. Fig. 1). For magnets with
spin-phonon coupling much weaker than the spin-spin in-
teractions (see e.g. Ref. [37]), the dynamics is governed
by (1) alone over a long intermediate time window, and
thus behaves like a closed system. Interchain couplings
in quasi 1d magnets are weak and will not modify the
short-time phenomenology. On the other hand, the con-
jectured break-down of MBL at long times due to very
rare regions in higher dimensions [30] is expected to be
a much less efficient channel of delocalization than that
provided by realistic couplings to phonons.

Ergodic spin dynamics would relax the initial mag-
netization completely. A finite remanent magnetization
thus implies non-ergodicity (see also [38, 39] for disorder-
free examples), and can serve as an order parameter in
the MBL phase of the isolated system. This is a mag-
netic analogue of the remanent density modulation con-
sidered in [40] and measured in recent cold-atom experi-
ments [31, 32]. However, it is experimentally much sim-
pler to access, since it focuses on the total magnetization
which can be readily picked up, e.g., by a squid, with-
out requiring scattering measurements or microscopy to
resolve spatial patterns.

Conserved dressed spins. We consider random fields
hk uniformly distributed in [−h, h], and assume strong
anisotropy of the couplings, |Jy| � |Jx| � |Jz|, h. For
simplicity we set Jy = 0. For Jx = 0, the spin chain
is classical and trivially localizes dynamically, as the σzk
form a complete set of commuting, strictly local con-
served operators, and the eigenstates are product states
in this basis. Perturbative arguments as in Refs. [15, 16]
predict that localization remains intact for small quan-
tum fluctuations |Jx| � h. This comes along with a com-
plete set of mutually commuting conserved operators Ik.
Those are predicted to be quasi-local [26, 27, 29], their
action decaying exponentially with the distance from a
localization center, with a finite correlation length ξ. The
Ik are dressed (rotated) versions of the spin degrees of
freedom. They can be constructed explicitly by apply-
ing perturbation theory to the σzk and resumming the
divergences associated to sparse local ‘resonant’ regions
in the chain where the effect of quantum fluctuations is
non-perturbative [27]. Their existence follows as a corol-
lary of Ref. [28], where MBL was shown to occur due to
the quasi-locality of the unitary operator U that diag-
onalizes the disordered Hamiltonian: U is proved to be
a sequence of small unitary transformations almost ev-
erywhere in the chain, up to rare resonant regions. The

inverse U−1 deforms σzk into the conserved quasi-local
operator Ik = UσzkU

−1 which admixes only degrees of
freedom in the vicinity of k.

Below, we explicitly construct the dressed spin opera-
tors following the recipe of Ref. [27]. We then use them to
calculate analytically the remanent magnetization to low
orders in the quantum fluctuations |Jx|/h. This method
is very efficient [56] to describe the asymptotic magneti-
zation in non-resonant regions where the transverse cou-
plings act perturbatively. However, we will see that the
dominant effect of weak quantum fluctuations arises from
rare resonant regions, where the perturbative expansion
in Jx has to be resummed to infinite order.
Computation of remanent magnetization. We consider
the dynamical evolution of the fully magnetized initial
state |ψ0〉 with density matrix |ψ0〉〈ψ0| =

∏
i (1 + σzi ) /2,

governed by (1). [57] We are interested in the long time
remanence of the magnetization, and thus consider the
time averaged magnetization at site j:

m̂j = lim
T→∞

1

T

∫ T

0

dtmj(t); mj(t) = 〈ψ0|σzj (t)|ψ0〉. (2)

For Jx = 0, the local magnetization is trivially con-
served, mj(t) = 1. For finite Jx, the non-trivial dynam-
ics of σz(t) reduces m̂j . In the MBL regime, the time
evolution is strongly constrained by the conservation of
the dressed spins Ik with |k − j| . ξ. As a consequence,
partial memory of the initial order 〈σzj 〉 = 1 is retained
for arbitrarily long time, resulting in a finite remanence
of the site-averaged magnetization m̂ = L−1

∑
j m̂j .

In the absence of spectral degeneracies, (2) can be ex-
pressed via a Lehmann representation as

m̂j =
∑
α

〈ψ0|PασzjPα|ψ0〉, (3)

where Pα = |ψα〉〈ψα| =
∏L
k=1

(
1 + i

(α)
k Ik

)
/2 projects

onto the eigenstate labeled by the quantum numbers

i
(α)
k ∈ {±1} of the dressed spins Ik. Using the opera-

tor identity∑
α

Pασ
z
jPα = σzj + (4)

L∑
n=1

∑
kn>kn−1···>k1

n∏
l=1

(
Ikl
2

)[[[
σzj , Ik1

]
, Ik2

]
, · · · , Ikn

]
,

we obtain (cf. Supplemental Material for details):

m̂j = 1 +

L∑
n=1

∑
kn>kn−1···>k1

Tr

{
n∏
i=1

(
Iki
2

)[[[
σzj , Ik1

]
, Ik2

]
, · · · , Ikn

] L∏
`=1

(
1 + σz`

2

)}
, (5)
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where Tr {·} denotes the trace, and some fixed ordering
among the labels of the operators Ik is assumed [58].

For the dressed spins Ik we write the formal expansion

Ik = σzk + δI
(1)
k + δI

(2)
k + · · · (6)

with δI
(n)
k = O(Jnx ). At any order n, δI

(n)
k is uniquely

determined by the constraints [Ik, H] = 0 and I2k = 1
[27], see also the Supplemental Material. For the Hamil-
tonian (1) with Jy = 0, the first order terms read

δI
(1)
k =

∑
ρ,τ=±1

(
A(k)
ρτ O

(k)
ρτ −A(k−1)

ρτ O(k−1)
ρτ

)
+

∑
ρ,τ=±1

(
B(k)
ρτ ∆(k)

ρτ +B(k−1)
ρτ ∆(k−1)

ρτ

)
,

(7)

where we define the local operators

O(k)
ρτ =

1 + ρ σzk−1
2

[
σ+
k σ
−
k+1 + h.c.

] 1 + τ σzk+2

2
,

∆(k)
ρτ =

1 + ρ σzk−1
2

[
σ+
k σ

+
k+1 + h.c.

] 1 + τ σzk+2

2
,

(8)

and the coefficients

A(k)
ρτ = − Jx

hk − hk+1 + Jz(τ − ρ)
,

B(k)
ρτ = − Jx

hk + hk+1 − Jz(τ + ρ)
.

(9)

At low orders, the sum over multi-indices in Eq. (5) re-
duces to the few terms involving indices sufficiently close
to k, since other commutators vanish. The lowest order
corrections to m̂j are given by the terms with n = 1, 2
in (5). Inserting (7) into (4) and (3) we find [59]:

m̂j = 1−
(
B

(j)
1,1

)2
−
(
B

(j−1)
1,1

)2
+O(J3

x). (10)

The above method is easily extended to higher orders
on the majority of sites around which the quantum fluc-
tuations act perturbatively. However, we see that the
site average of 〈m̂j〉dis is ill-defined for |Jz| < h. The
apparent divergence is due to rare resonances, i.e., real-
izations of neighboring local fields that give rise to small
denominators in Eq. (9). Resonances may also arise at
higher order n in perturbation theory, if two nearly de-
generate classical configurations hybridize strongly due
to a coupling ∼ Jnx . The corresponding small denomi-
nators render the naive perturbative expansion (6) non-
convergent, as a small denominator generated at order n
re-appears repeatedly in higher order terms, giving rise
to norm-divergent operator subsequences. However, a
defining feature of the MBL phase is that resonances are
sparse in space, each of them involving spins only within
the typical range of the correlation length ξ. [27, 28].
Thus, local re-summations (or equivalently, exact diago-
nalizations of resonant subsystems of typical size ξ) suf-
fice to cure the divergences of the perturbation theory

(in analogy with the single particle case [1]) and yield
a ‘regularized’, norm-convergent operator expansion for
the Ik.

Let us illustrate this re-summation for resonances in-
volving spins on neighboring sites, as those dominate in
the strong-disorder limit. Resumming all terms in (6)
containing higher powers of the resonant Jx−coupling
is equivalent to determining the operators Ĩi (satisfying
Ĩ2i = 1) that are conserved by the reduced Hamiltonian

H(k) ≡
L∑
i=1

(
hiσ

z
i − Jzσzi σzi+1

)
− Jxσxkσxk+1, (11)

where only the resonant Jx−coupling is retained. These
operators serve as a new basis for the perturbation the-
ory in the remaining, non-resonant Jx−couplings. They
can be constructed explicitly by determining a local ro-
tation that acts non-trivially in the vicinity of the sites
k, k + 1, deforming the pair σzk, σ

z
k+1 into two modified,

exactly conserved operators Ĩk, Ĩk+1 (with Ĩi = σzi for
i 6= k, k + 1), similarly to [28]. For the particular model
(1) the resulting Ĩk, Ĩk+1 are again linear combinations
of (8), albeit with modified coefficients (9) given in the
Supplemental Material. [60] Inserting the conserved in-
tegrals into (3), we find an expression like (10), but with
the substitution:

B(j)
ρτ −→ −

Jx(
[hj + hj+1 − Jz(τ + ρ)]

2
+ J2

x

)1/2 , (12)

a result one can also derive from exact diagonalization
of two neighboring spins in the field of their polarized
neighbors, and computing their diminished magnetiza-
tion. From this we obtain the remanent magnetization

〈m̂j〉dis = 1− π|Jx|
h

(
1 +

Jz
h

)
+O(J2

x), (13)

which for |Jz| < h is non-analytic in Jx. This feature
arises due to resonances. The non-analytic cusp at Jx = 0
has the largest magnitude in the limit of vanishing Ising
interactions, Jz → 0 (recall that Jz < 0), as it creates
the lowest effective disorder.
Atomic analogues. The gauge transformation U =∏L
j=1 exp

(
iπ2 jσ

x
j

)
maps the antiferromagnetic chain (1)

into its ferromagnetic counterpart with Jx → Jx, Jy,z →
−Jy,z, and the initial state |ψ0〉 into a Néel state. The
order parameter is mapped into the staggered magneti-
zation. Such a quantity has been studied numerically
in [41] for disordered, long-range transverse field Ising
chains, modeling the ion-trap quantum simulators ex-
plored experimentally in [33]. The staggered magnetiza-
tion is a close analogue of the particle imbalance studied
as an experimental probe of many-body localization in
cold atoms [31]:

I(t) =
2

L

L∑
j=1

(−1)j〈nj(t)〉. (14)
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Here nj is the occupation number of site j, after prepara-
tion in an initial density wave nj(t = 0) = [1 + (−1)j ]/2.

A ferromagnetic spin chain with Jx = Jy is equiva-
lent, via the Jordan-Wigner transformation, to a one-
dimensional model of interacting spin-less fermions in a
disordered potential. For Jz = 0 it reduces to the non-
interacting Anderson model

H = −J
L−1∑
i=1

(
c†i ci+1 + h.c.

)
+ 2

L∑
i=1

hini (15)

for which the imbalance is a sum over single particle con-
tributions, weighted with the occupation probability of
eigenstates in the initial state. A standard calculation
leads to the remanent imbalance (14) in the form

Î =
1

L

L∑
α=1

(
L∑
k=1

(−1)kφ2α(k)

)2

, (16)

where φα(i), with 1 ≤ α, i ≤ L are the localized single
particle eigenstates of the quadratic Hamiltonian (15).
This solvable case is interesting as it can be analyzed
deeper into the weak disorder limit.

Fig. 2 shows the imbalance as a function of J/h, as
obtained by exact diagonalization. At small J/h a linear
cusp with the slope derived in (13) (using Jz = 0, Jx = J)
is seen. For large J/h, Î decays algebraically as (J/h)−2,
as derived in the Supplemental Material [61] and verified
numerically in Fig. 2. [62]
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FIG. 2: Dependence of the remanent density imbalance on
the hopping strength J for a chain of non-interacting

fermions (L = 100, 5 · 103 realizations). The continuous red
line is the analytical estimate (13) with Jx = J, Jz = 0. The

blue dashed line is a power law fit a+ c(J/h)−2, with
a = 0.003, c = 0.101.

Let us now discuss the qualitative effects of fermionic
interactions. The addition of a term U

∑L
i=1 nini+1 (the

equivalent of Ising interactions) to the Hamiltonian (15)
may have opposite effects, depending on the value of J/h.

For J/h � 1, the interaction broadens the distribution
of the energy denominators, and thus acts as an addi-
tional source of disorder, which reduces the deviation of
〈Î〉dis from the classical limit. The same holds in the
magnetic analogue as confirmed by Eq. (13). For larger
J/h > 1, the single particle localization length becomes
substantial. The dominant effect of interactions is then
to mediate (virtual) scattering between single particle
states, as discussed in Ref. [15, 16]. One expects that
this suppresses the remanent imbalance, as was indeed
observed in the experiments of Ref. [31]. At large enough
interactions (and finite temperature) delocalization is in-
duced by a proliferation of resonant regions, which leads
to the vanishing of the order parameter 〈Î〉dis at a U -
dependent critical hopping J∗(U)/h. The perturbative
arguments in [15, 16, 27] predict that the localized phase
is stable for U < U∗ ∝ δξ/ log (W/δξ). Here W is the
total bandwidth of the non-interacting Hamiltonian (15)
and δξ ∼ W/ξ the average energy gap between single-
particle states localized within the same region of size ξ,
which is assumed to be much larger than the lattice con-
stant, ξ � a. This corresponds to J/h � 1, implying
ξ ∼ (J/h)2 and W ≈ J . However, as was pointed out
recently [42], previous studies neglected the phenomenon
of spectral diffusion [43, 44], which is expected to reduce
the critical interaction strength in the weak disorder limit
to U∗ ∝ δξ (δξ/W) (up to logarithmic corrections).

Discussion and conclusion. We have proposed and
analyzed the presumably simplest possible protocol for
quantum disordered magnets to exhibit the absence of
ergodic dynamics, and thus Many-Body Localization in
the form of remanent magnetization in initially ferromag-
netically polarized antiferromagnets. The present calcu-
lation illustrates how our explicit recipe for constructing
the conserved quantities allows for analytic predictions
for quantities of experimental relevance. It is an ana-
lytical alternative to several numerical schemes based on
DMRG [45–48] or quantum Monte Carlo [49] that al-
low one to study properties of specific MBL eigenstates.
The simple formula (5) can be applied to the conserved
pseudo-spins constructed numerically in Refs. [50–52] for
non-perturbative interactions by means of renormaliza-
tion procedures or diagonalizing flows. It would be in-
teresting to extend this calculation beyond the lowest
orders, possibly exploiting the expansion for the con-
served quantities in the forward approximation [27, 53],
to discuss the behavior of the typical value of the rema-
nent magnetization when approaching the delocalization
threshold.

An interesting question concerns the vanishing of the
order parameter (16) at criticality. If it is continuous,
it might exhibit non-trivial scaling with the system size,
potentially reflecting multifractality of critical wave func-
tions. However, numerical studies of the scaling of the
entanglement entropy of small subsystems [36, 54] have
suggested that at the delocalization transition long-time
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averages of typical observables jump discontinuously, im-
plying a discontinuity of the order parameter (remanent
magnetization or imbalance). Given the difficulty in ac-
cessing numerically the relevant regimes, the prospect of
probing these scenarii experimentally is appealing.
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