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We present quantum Monte Carlo calculations of few-neutron systems confined in external poten-
tials based on local chiral interactions at next-to-next-to-leading order in chiral effective field theory.
The energy and radial densities for these systems are calculated in different external Woods-Saxon
potentials. We assume that their extrapolation to zero external-potential depth provides a quantita-
tive estimate of three- and four-neutron resonances. The validity of this assumption is demonstrated
by benchmarking with an exact diagonalization in the two-body case. We find that the extrapolated
trineutron resonance – as well as the energy for shallow well depths – is lower than the tetraneu-
tron resonance energy. This suggests that a three-neutron resonance exists below a four-neutron
resonance in nature and is potentially measurable. To confirm that the relative ordering of three-
and four-neutron resonances is not an artifact of the external confinement, we have tested that the
odd-even staggering in the helium isotopic chain is reproduced within this approach. Finally, we
discuss similarities between our results and ultra-cold Fermi gases.

PACS numbers: 21.60.–n, 21.10.–k, 21.30.–x, 21.60.De

In recent years, there have been impressive theoretical
and experimental investigations to determine properties
of neutron-rich nuclei, including isotopic chains of oxy-
gen, calcium, and others [1, 2]. However, understanding
properties of nuclei beyond the dripline is very challeng-
ing and intriguing. Pure neutron matter has also received
much attention, as it provides a bridge between neutron-
rich nuclei, through the symmetry energy, and neutron
stars [3–6]. Therefore, understanding the interactions be-
tween neutrons is an important task.

This question has motivated experimental investiga-
tions of few-neutron systems. In 2002, an experimental
claim for a bound tetraneutron emerged from the de-
tection of neutron clusters from 14Be fragmentation [7].
However, this claim has not since been reproduced and it
seems clear from several increasingly sophisticated stud-
ies [8–10] that a tetraneutron system must be unbound.
The possibility of the existence of a tetraneutron reso-
nance is still an open question. Recently, a candidate
four-neutron resonance has been observed in the double-
charge-exchange reaction 4He(8He,8Be) at an energy of
(0.83± 0.65± 1.25) MeV, where the first error is statisti-
cal and the second error is systematic [11]. Several other
experiments are approved to search for the tetraneutron
resonance [12, 13], including a higher statistics run of the
double-charge-exchange reaction [14].

On the theoretical side, regarding calculations of a pos-
sible tetraneutron resonance and their sensitivity to nu-
clear forces, the situation is inconclusive. Green’s Func-
tion Monte Carlo calculations [10] and No-Core-Shell-
Model calculations [15] suggest that there might be a
tetraneutron resonance with energy lower than about
2 MeV. Other calculations, however, suggest that in or-
der to have a four-neutron resonance compatible with the
experimental measurements above, the three-neutron in-

teraction must be strongly modified [16], or even a four-
neutron force needs to be invoked [17]. However, what
still remains missing is an ab initio investigation based
on two- and three-neutron interactions derived from chi-
ral effective field theory (EFT). This Letter presents first
results in this direction.

We investigate the properties of 2, 3, and 4 neutrons
confined in an external potential. Our calculations pro-
vide evidence that i) nuclear Hamiltonians constructed
within chiral EFT support a tetraneutron resonance at
an energy of 2.1(2) MeV compatible with recent exper-
iments, ii) because of the extreme diluteness of the sys-
tem, the role of three-body (and higher-body) interac-
tions as well as the effects of details of the regulators in
the two-body systems are very small, iii) the energy of a
three-neutron resonance at 1.1(2) MeV is lower than that
of four neutrons, and iv) there are interesting analogies
with systems made of ultra-cold fermions. These conclu-
sions open the possibility for new experimental searches
of a trineutron resonance, and that similar systems might
be simulated by using ultra-cold Fermi gases.

We start our calculation from a many-body Hamilto-
nian that includes two- and three-nucleon interactions
obtained within the framework of chiral EFT at next-
to-next-to-leading-order (N2LO) recently developed in a
local form [18–22]. Since the pure neutron system is un-
bound, we confine the neutrons in an external trap (called
“neutron drops”). These systems can be very accurately
solved by starting from microscopic nuclear Hamiltoni-
ans and have been extensively studied with the goal of
improving energy-density functionals in extrapolating to
large isospin asymmetries [23]. We model the system
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starting from the Hamiltonian

H = −
∑
i

h̄2

2m
∇2
i +

∑
i

VWS(ri) +
∑
i<j

Vij +
∑
i<j<k

Vijk ,

(1)
where VWS(r) = −V0/[1 + e(r−RWS)/a] is a Woods-Saxon
potential with depth V0, radius RWS and diffuseness a =
0.65 fm [24], and Vij and Vijk are two- and three-body
interactions constructed at N2LO in Refs. [19, 21, 22].
We have checked that our results are insensitive to the
precise value of the diffuseness parameter a. Changing
a by 20% in either direction changes the energy by less
than 1% in the two-neutron case.

We use the auxiliary-field diffusion Monte Carlo
method (AFDMC) [25] to project out the ground state
from a variational trial wave function whose form is:

〈RS|ΨV 〉 =

〈RS|
[∏
i<j

f c(rij)
][

1 +
∑
i<j

Fij +
∑
i<j<k

Fijk

]
|ΦJM 〉 , (2)

where |RS〉 represent a collection of sampled 3A spatial
coordinates and the 2A spinors of the A neutrons with an
amplitude for the ↑ and ↓ spin, and f c(rij), Fij , and Fijk
are two- and three-body spin-dependent functions that
account for the short-range correlations among nucleons,
see Ref. [26] for more details. |Φ〉 is an antisymmetric
uncorrelated mean-field part that describes the correct
quantum numbers and asymptotic behavior of the sys-
tem. In our case, it is given by a linear combination of
Slater determinants:

〈RS|ΦJM 〉 =
∑
n

kn

[∑
D{φα(ri, si)}

]
JM

,

φα(ri, si) = Φnlj(ri) [Ylml
(r̂i)ξsms

(si)]jmj
, (3)

where [. . . ]JM means a linear combination of Slater de-
terminants coupled with Clebsch-Gordan coefficients to
have the quantum numbers JM . The radial components
Φnlj are obtained by solving the Hartree-Fock equations
with the Skyrme force SKM [27], Ylml

are spherical har-
monics, and ξsms

are spinors in the usual up-down basis.
For each (JM) set of quantum numbers there are several
combinations of single-particle orbitals. In particular, we
included orbitals in 1S1/2, 1P3/2, 1P1/2, 1D5/2, 2S1/2,
and 1D3/2. Since for shallow external potentials the
Hartree-Fock solution is unbound, we tuned the depth of
the external trap (imposed on the orbitals, which is dis-
tinct from the external potential) to generate the orbitals
in such a way that they are bound, and then we added
an additional variational parameter to vary their width.
The two- and three-body correlations as well as the co-
efficients kn are obtained by minimizing the variational
energy as described in Ref. [28]. The ground state of
the system is finally obtained with a projection in imag-
inary time as Ψ(τ) = exp[−(H − ET )τ ]ΨV , where ET is
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FIG. 1. The energy of three (squares) and four (circles) neu-
trons in external Woods-Saxon potentials for varying radius
RWS as a function of the well depth V0. The blue/upper
lines correspond to RWS = 5 fm, the green/middle lines to
RWS = 6 fm, and the red/lower lines to RWS = 7.5 fm. In
each case, a quadratic fit to the AFDMC results was obtained
and used to extrapolate to the zero-well-depth limit. The
inset shows calculations of four neutrons at LO (green dia-
monds), NLO (orange squares), and N2LO (blue circles) with
uncertainties coming both from the quantum Monte Carlo
statistical uncertainty and from the truncation of the chiral
expansion to the order N2LO (discussed in more detail in the
text) for the Woods-Saxon radius RWS = 6.0 fm.

a parameter that controls the normalization (the results
are independent of the choice of ET ). In the limit of
τ →∞ the lowest energy state with the symmetry of ΨV

is found (for more details see Ref. [26]). One important
point worth emphasizing is that the AFDMC method
does not rely on a basis-set expansion. Therefore, in the
infinite-volume limit, continuum states are automatically
included.

We have calculated the energy of three and four neu-
trons for different depths V0 and radii RWS. The results
are summarized in Fig. 1, and they have been obtained
using the local chiral potential of Ref. [22] with a cutoff
of R0 = 1.0 fm. The plot shows the energy as a func-
tion of V0 for three (squares) and four (circles) neutrons.
The blue (upper curves for various neutron numbers),
green (middle curves), and red (lower curves) are the
results obtained for different radii RWS as indicated in
the figure. The lines are quadratic fits to the energies of
four (solid lines) and three (dashed lines) neutrons. The
extrapolations to V0 → 0 obtained for the different values
of RWS converge to the same point, indicating that the
results at zero well depth are independent of the geom-
etry of the external potential (provided that it goes to
zero at large distances, and its range is larger than the
nucleon-nucleon effective range). Since we are simulating
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a system that is naturally unbound, we enforce the center
of mass to have no motion in order to calculate internal
energies only, as is commonly done in quantum Monte
Carlo calculations for nuclei, i.e., given the translation-
ally invariant Hamiltonian, the Monte Carlo evolution is
performed so that the center of mass of the system does
not move.

In order to establish the role of the cutoff R0 in the
nucleon-nucleon interaction, and that of the three-body
forces, we have repeated the calculation using R0 =
1.2 fm, and turning off the three-neutron interaction.
The results are indistinguishable from the cases shown in
Fig. 1, within statistical errors (which are smaller than
the points). Given the density of the system this is not
totally unexpected, as we discuss below. Another source
of systematic uncertainty comes from the truncation of
the chiral expansion at N2LO. To estimate this uncer-
tainty, we have considered the case of four neutrons in the
Woods-Saxon well with RWS = 6.0 fm and repeated our
calculations at leading order (LO) and next-to-leading
order (NLO). Following Ref. [29], we estimate the un-
certainty coming from the truncation of the chiral ex-
pansion at N2LO. We add these in quadrature to the
quantum Monte Carlo statistical uncertainties. These
are displayed as the error bars in Fig. 1 for the case with
RWS = 6.0 fm. They are still smaller than the points, and
within the uncertainties we have quoted, do not affect
the extrapolated energy of the four-neutron system. The
inset also shows the LO, NLO, and N2LO results with
uncertainties as described above. One can see that, espe-
cially near the limit where the system becomes unbound,
the results are not very sensitive to the chiral order. The
fits in Fig. 1 give an energy per particle of 0.37(7) MeV
for three neutrons and 0.53(5) MeV for four neutrons.
This suggests that there could be a trineutron resonance
in nature at a lower energy than the four-neutron reso-
nance. We have also considered the extrapolation from a
different approach. We have multiplied the N2LO inter-
action by an overall scale factor α and tuned α until the
four neutrons were bound as in Ref. [30]. We find a scale
factor of α ∼ 1.3 is sufficient to bind the four neutrons.
We have varied α and performed an extrapolation similar
to what is shown in Fig. 1 and found an energy for the
unbound system at α = 1 of E = 2.0(1.0) MeV, which is
consistent with our results coming from the trapped four
neutrons.

Our results rely on the assumption that the extrapo-
lation of the energy to the zero-depth external potential
may be interpreted as a resonance energy, as suggested
in Ref. [10]. To provide support for this interpretation
we have designed a simple S-wave potential consisting of
two Gaussians.

V (r) = V1 e
−
(

r
R1

)2

+ V2 e
−
(

r−r2
R2

)2

, (4)

with parameters V1 = −1000 MeV, V2 = 865 MeV,
R1 = 0.4981 fm, R2 = 0.2877 fm, and r2 = 0.9972 fm,
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FIG. 2. Energy of two neutrons trapped in various Woods-
Saxon wells interacting via a simple model potential Eq.(4)
designed to give a low-lying resonance. Also shown are the
linear extrapolations to zero well depth and the resonance
energy ER and width Γ extracted from the continuum. The
black point at V0 = 0 MeV is the average and standard devi-
ation of the extrapolations evaluated at zero well depth.

such that we have an attractive well at the origin and a
repulsive barrier at ∼ 1.0 fm. This potential gives a reso-
nance at ER = 1.84 MeV with a width of Γ = 0.282 MeV.
In Fig. 2, we have diagonalized the two-body Hamil-
tonian with this simple S-wave potential plus Woods-
Saxon wells of various widths and depths. Extrapolat-
ing the bound-state energies to zero well depth as in
the realistic case, we have found an energy intercept
ER = 1.83(5) MeV. Similarly, we have constructed a
two-body interaction that does not have any resonance (a
purely attractive Gaussian) and found that the Woods-
Saxon depth required to bind the system is unnaturally
large, and that the extrapolations for individual widths
do not converge to the same energy at zero well depth. In
addition, we have calculated the energy of two neutrons
interacting via the chiral N2LO interactions in a Woods-
Saxon well, and found an extrapolation compatible with
the virtual state energy of ∼ 0.1 MeV. These exact calcu-
lations therefore provide evidence that our extrapolation
method can provide meaningful resonance energies.

We have also computed the density distribution of neu-
trons in the trap. In Fig. 3 we show the neutron dis-
tribution inside the trap for three and four neutrons in
different Woods-Saxon wells with RWS = 6 fm, normal-
ized such that their integral is equal to the number of
neutrons. As can been seen, the density of the systems
never exceeds the value of ∼ 0.01 fm−3 suggesting that
the system is very dilute. In the case of infinite neutron
matter [19, 21, 22], at such low densities the energy per
neutron is totally dominated by the S-wave part of the
neutron-neutron interaction, and the results are almost
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FIG. 3. One-body densities for three (squares) and four (cir-
cles) neutrons in two different Woods-Saxon wells with depths
3 MeV (blue) and 1.5 MeV (red) with a fixed RWS = 6.0 fm.

independent of the two-body cutoff R0 and the three-
neutron interaction. However, it is interesting to note
that in the same well the three-neutron system is always
denser near the center than the four-neutron system, and
the latter shows a distribution with a peak around 3 fm,
suggesting that the system is arranged on a “shell”. No-
tably, this difference in shape between the three- and
four-neutron systems persists as the geometry of the trap
is changed. One possible interpretation is that in the case
of three neutrons one pair (up-down) of neutrons is sit-
ting in the center of the trap, and one extra neutron is
orbiting around in a P state. In the case of four neutrons,
instead the two pairs are orbiting around the center, mak-
ing the system less dense in the center. It would be very
interesting to measure these properties by tracking the
position of the neutrons. The density of four neutrons in
Woods-Saxon wells with different V0 and RWS is shown
in Fig. 4. Also in this case we can verify that the systems
is very dilute.

Finally, we have performed additional calculations of
two to six neutrons in different wells adapted to quali-
tatively mimic the helium isotopes. In this model, we
replace the two protons with a Woods-Saxon potential,
and calculate the energy of neutrons in such a well, in-
teracting with the N2LO interaction. This model has
been successfully applied to describe the oxygen isotopic
chain [31]. In Fig. 5, we show the energy of the helium iso-
topic chain as obtained from this simplified model. The
results are normalized to the 4He energy, which corre-
sponds to the energy of only two neutrons in the Woods-
Saxon well. Again, we keep the center of mass of the
system fixed. Considering different Woods-Saxon poten-
tials, we find in this case the expected odd-even pairing
effects, i.e., the systems with odd numbers of neutrons
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FIG. 4. One-body densities for four neutrons in Woods-Saxon
wells with various depths and widths.
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FIG. 5. Energy of two to six neutrons trapped in vari-
ous Woods-Saxon wells (circles). The wells are designed to
approximately reproduce the binding pattern of the helium
chain. For each well, the two-neutron energy is taken as the
reference point to which the other energies for that well are
compared. The black squares are the experimental values
compared to the 4He energy. For 5He, we take the value of
the P3/2 resonance, the width of which is shown in gray.

always have higher energies than the neighboring sys-
tems with an even number of neutrons. In this case V0
is strongly attractive and compared to Fig. 1 the order-
ing of three versus four neutron energies is reversed. For
the helium isotopes, we attribute this due to the addi-
tional pairing attraction generated from interacting with
the 4He core. The ordering, with a lower trineutron en-
ergy, changes in the region of small V0 where densities
are much lower than for the helium isotopes.
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Our results can be interpreted from the viewpoint of
ultracold atom experiments. We observe that the ex-
trapolated resonance energies of three- and four-neutron
states in Fig. 1 scale with the number of pairs, which
is N(N − 1)/2. This behavior can be qualitatively un-
derstood by considering the diluteness of the system.
For large particle number N , the scaling with the num-
ber of pairs is consistent with the scaling of the mean-
field (MF) interaction energy of a dilute gas of spin-1/2
fermions [32],

EMF =
πa

m

N2

V
, (5)

which scales as N2. Here, a is the two-body scatter-
ing length and V is the volume. Quantum degener-
ate Fermi gases can also be engineered in experiments
with ultracold atoms [33]. The mean-field energy of a
two-component Fermi gas in a harmonic trap was mea-
sured for both signs of the scattering length using radio-
frequency spectroscopy [34]. This suggests that few-
neutron resonances and the transition from few- to many-
body physics could be simulated in experiments with ul-
tracold atoms. Similar experiments have already been
carried out for quasi-one-dimensional systems with an
impurity where it was found that systems with N ≥ 4
majority atoms already develop a Fermi sea [35]. More-
over, experiments with ultracold atoms could be used to
investigate whether the properties of the density distri-
butions in Figs. 3 and 4 are governed by universal large-
scattering length physics or details of nuclear forces.

In this Letter, we have simulated two, three and four
neutrons in external potentials and extrapolated to the
zero well-depth limit. These extrapolations are indepen-
dent of the trap geometry since different Woods-Saxon
widths converge to the same energy at zero well depth.
We found a tetraneutron resonance energy in agreement
with recent measurements. Taken together with the re-
sults from the simple S-wave potential and the results
mimicking the helium isotopic chain, our results suggest
that a trineutron resonance may be lower in energy than
a four-neutron resonance and therefore possibly experi-
mentally observable. We also conclude that the effects
of three-neutron interactions are very small in these sys-
tems due to their diluteness. In addition, the diluteness
of these systems offers the exciting possibility to shed
more light on the properties of few-neutron systems with
experiments with ultracold atomic Fermi gases.

We thank T. Aumann, J. A. Carlson, B. Gibson,
S. Pieper, A. Rusetsky, K. E. Schmidt and R. B. Wiringa
for useful discussions. This work was supported by
the US Department of Energy under Contract No. DE-
AC52-06NA25396, the NUCLEI SciDAC project, the
ERC Grant No. 307986 STRONGINT, and the Deutsche
Forschungsgemeinschaft through Grant SFB 1245. The
computations were performed at Los Alamos Open
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