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Extensions of the photon and graviton soft theorems are derived in 4d local effective field theories
with massless particles of arbitrary spin. We prove that effective operators can result in new terms
in the soft theorems at subleading order for photons and subsubleading order for gravitons. The
new soft terms are unique and we provide a complete classification of all local operators responsible
for such modifications. We show that no local operators can modify the subleading soft graviton
theorem. The soft limits are taken in a manifestly on-locus manner using a complex double defor-
mation of the external momenta. In addition to the new soft theorems, the resulting master formula
yields consistency conditions such as the conservation of electric charge, the Einstein equivalence
principle, supergravity Ward identities, and that particles with spin greater than two cannot couple
to those with spin less than or equal to two.

I. INTRODUCTION

In quantum field theory, scattering amplitudes are key
observables for calculation of measurable decay rates and
cross-sections. Modern research on the mathematical
structure of amplitudes spans a wide range of topics:
from new “on-shell methods” implemented in computer
codes for efficient calculation of experimentally relevant
cross-sections to abstract mathematical interpretations
of certain amplitudes as volumes of geometric figures (see
e.g. [1–4]).
Interest in soft limits of amplitudes has recently been

rekindled due to the derivation of the classic soft pho-
ton and graviton theorems [5–11] as Ward identities of
asymptotic symmetries [12–17]. An intriguing question
is the effect of loop-quantum corrections on these recent
results. This is subtle for loops of massless particles be-
cause of IR divergences, but loops of massive particles can
be integrated out to leave effective local operators. The
purpose of this Letter is to completely classify quantum
corrections from loops of massive particles to the soft the-
orems using on-shell methods in the context of effective
field theory. Our primary result is a novel generalized
soft theorem in effective field theory.
Specifically, we show that in a 4d local effective field

theory of only massless particles, the tree-level soft pho-
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ton and graviton theorems receive modifications at sub-
leading and subsubleading orders, respectively. These
new modified soft theorems for positive-helicity soft pho-
tons or gravitons take the form

Aph
n+1=

(S(0)

ǫ2
+
S(1)

ǫ

)

An +
S̃(1)

ǫ
Ãn +O(ǫ) , (1)

Agrav
n+1=

(S(0)

ǫ3
+

S(1)

ǫ2
+

S(2)

ǫ

)

An +
S̃(2)

ǫ
Ãn +O(ǫ) , (2)

where S(i) and S(i) are the standard soft factors, well-
known from the work of [5–12], and given explicitly in
(4) and (5) below. The new soft terms are

S̃(1)Ãn =
∑

k

gk
[sk]

〈sk〉
Ã(k)

n , S̃(2)Ãn =
∑

k

gk
[sk]3

〈sk〉
Ã(k)

n ,

(3)
where gk denotes the couplings of the associated effec-
tive operators. The tilde and superscript (k) on the n-
point amplitude indicate that the particle type of the
kth leg of Ãn may differ from that in An+1. Thus, the
new soft terms are different from the factorized form of
the traditional soft theorems. Only a small set of ef-
fective operators can modify the soft theorems and we
provide a complete classification. We show that no mat-
ter which operator is responsible for the modification, the
kinematic soft factor is uniquely fixed to take the form
(3). (It would be interesting to know if these new univer-
sal modifications are associated with asymptotic symme-
tries.) In this note we present modifications of the soft
photon theorem, though our results naturally generalize
to non-abelian gauge theory.
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Only effective operators with 3-point interactions can
affect the single-particle soft theorems in (1) and (2). If
an operator has many derivatives, its interaction is too
soft to affect the soft theorems at these orders. For ex-
ample, trF 3 does not modify the soft theorem, but the
Pauli dipole operator χγµνFµνχ does. All effective oper-
ators that can modify the soft theorems (1)-(2) are listed
in (22) and (24). Note that our results imply that the
soft graviton theorem is not corrected at subleading order

1/ǫ2 in effective field theory. This is important for recent
proposals [16, 17] connecting soft graviton theorems to
asymptotic symmetries.
To investigate the soft limits, we present a novel ap-

proach based on a double complex deformation of the
amplitudes. Combining a “soft shift” with two BCFW
shifts allows us to identify the parts of the amplitude
responsible for the soft theorems as factorization poles.
Note that we are not deriving new recursion relations
and the results are independent of which lines are shifted
along with the soft line. The method allows us to take
the soft limit in a manifestly on-locus fashion that em-
phasizes the path dependence of the soft theorems at
subleading order.
The approach yields not only the well-known soft the-

orems and new soft terms, it also implies non-trivial,
though well known, consistency conditions, such as
charge conservation, the equivalence principle, and the
supersymmetric Ward identities which state that a spin
3/2 particle must be coupled supersymmetrically to a
graviton. We also demonstrate the well-known result
[18, 19] that no massless spin > 2 particle can couple
consistently to massless particles with spin 2 or less [20].

II. COMPLEX DEFORMATIONS

We work with spinor helicity formalism in 4d follow-
ing the conventions of [1, 2]. Momenta are assumed to
be complex so that angle and square spinors are inde-
pendent. The momentum ps = −|s〉[s| is taken soft holo-
morphically: |s〉 → ǫ|s〉 and |s] → |s], with ǫ a small
parameter. The standard soft theorems for soft positive-
helicity photons and gravitons then take the form (1)-(2)
(without the tilde’d modifications), where for a soft pho-
ton

S(0) =
∑

k

gk
〈xk〉

〈xs〉〈sk〉
, S(1) =

∑

k

gk
〈sk〉

Dsk , (4)

and for a soft graviton

S(0)=κ
∑

k

[sk]〈xk〉〈yk〉

〈sk〉〈xs〉〈ys〉
, S(2) =

κ

2

∑

k

[sk]

〈sk〉
D2

sk ,

S(1)=
κ

2

∑

k

[sk]

〈sk〉

(

〈xk〉

〈xs〉
+

〈yk〉

〈ys〉

)

Dsk . (5)

Here |x〉 and |y〉 are arbitrary reference spinors and
Dsk ≡ |s]a∂|k]a . When the amplitudes have their

momentum-conserving delta functions stripped off, the
derivatives are taken with a prescription where one uses
momentum conservation to eliminate a choice of two
square spinors [12].
In this note we use a prescription in which the soft limit

is taken along a path on the algebraic locus in momentum
space defined by requiring that the external momenta are
on-shell and satisfy (n+1)-particle momentum conserva-
tion. Start with n unshifted momenta pk = −|k〉[k| satis-
fying n-particle momentum conservation,

∑n
k=1 pk = 0.

Introduce the soft momentum ps = −|s〉[s| such that the

shifted momenta p̂k = −|k̂〉[k̂|, defined as

|ŝ〉 = ǫ|s〉 − z|X〉 ,

|̂i] = |i]− ǫ
〈js〉

〈ji〉
|s] + z

〈jX〉

〈ji〉
|s] ,

|ĵ] = |j]− ǫ
〈is〉

〈ij〉
|s] + z

〈iX〉

〈ij〉
|s] ,

(6)

with no other spinors shifted, satisfy (n+1)-particle mo-
mentum conservation, p̂s +

∑n
k=1 p̂k = 0. The spinor

|X〉 is completely arbitrary. The complex deformation
(6) can be viewed as the combination of a soft ǫ-shift

[21] and two BCFW shifts with parameters z1 = 〈jX〉
〈ji〉 z

and z2 = 〈iX〉
〈ij〉 z, and z|X〉 = z1|i〉+ z2|j〉. The choice of

the two lines i and j is arbitrary and does not affect the
physics conclusions.
For any momentum k = 1, . . . , n we have

P̂ 2
sk = (p̂k + p̂s)

2 = (ǫ − ǫk)P
2
sk , ǫk = z

〈Xk〉

〈sk〉
. (7)

Evaluating P̂sk at ǫ = ǫk, we obtain P̂sk = −|k〉[P̂sk| with

|P̂is] = |i] , |P̂js] = |j] ,

|P̂sk] = |k] + z
〈Xs〉

〈sk〉
|s] , for k 6= i, j .

(8)

We are interested in poles at ǫ = 0 in the (n+1)-particle
amplitude. With z = 0, there are multiple contributions
to such poles, since (as is obvious from (7)) all 2-particle
channels with a soft line s contribute. The role of z 6= 0
is to separate these poles to different locations in the
complex ǫ-plane and exploit that the amplitude factorizes
on simple poles. Since the only possible poles in ǫ come
from the 2-particle channels, we can write

Ân+1(z, ǫ) =
∑

k,hP ,c

Â3

(

ŝ, k̂,−P̂ hP

sk,c

) 1

P̂ 2
sk

Â(k)
n (z) +O(ǫ0) ,

(9)
because when a propagator goes on shell, the amplitude
factorizes into a product of on-shell amplitudes [22]. The
sum is over all relevant momentum channels k as well
as over the spectrum of particles on the internal line, as
indicated with the helicity label hP and a collective index
c of other quantum numbers. The superscript on the n-
point amplitude indicates that it in general depends on

the channel momentum k: Â
(k)
n (z) = Ân

(

P̂−hP

sk,c̄ , . . .
)

.
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Little-group scaling fixes the 3-particle amplitude up
to a constant which we absorb in the associated coupling
gHk

, where Hk = {hs, hk, hP ; a, b, c} labels helicities and
possible quantum numbers:

Â3

(

ŝ, k̂,−P̂ hP

sk

)

= gHk
[ŝk̂]x1 [k̂P̂sk]

x2 [P̂skŝ]
x3 , (10)

where x1 = hs + hk − hP , x2 = hk + hP − hs, and x3 =
hP + hs − hk. In special 3-particle kinematics, another
option is that A3 could depend on angle brackets only;
however, the shifted angle brackets vanish. The mass
dimension of the coupling is

[gHk
] = a− 2hs , with a ≡ hs − hk − hP + 1 . (11)

Using the kinematics above, (9) becomes

Ân+1(z, ǫ) =
∑

k,hP ,c

gHk
[sk]2hs−a〈Xs〉1−a Â

(k)
n (z)

ǫ za−1〈sk〉2−a

(

1− z
ǫ
〈Xk〉
〈sk〉

)
+O(ǫ0) .

(12)
This is the “master formula” for the following analysis.
(For comments about signs, see footnote [19].) We work
with the Laurent expansion (12) for sufficiently small z ≪
ǫ and, as we shall see, the soft theorems then follow from
the O(z0) terms.

III. PHOTON AND GRAVITON CONSISTENCY

CONDITIONS

At tree level, locality requires that an amplitude can
be singular only on a factorization channel. For z = 0
and generic ǫ 6= 0 there is no associated channel, so the
appearance of such a pole violates locality. Therefore, if
the value of a is greater than 1 in (12), the sum of residues
of the apparent poles at z = 0 must vanish. This imposes
non-trivial constraints on the amplitudes.
Two non-trivial constraints arising from this require-

ment are

hs = 1, a = 2 =⇒
∑

k

gHk
= 0 ,

hs = 2, a = 3 =⇒
n
∑

k=1

gHk
[sk]〈sk〉 = 0 .

(13)

The first condition is simply charge conservation. The
second condition can be satisfied only when the gravi-
ton couples identically to all particles; we recognize this
as the equivalence principle. These results were first ob-
tained by a different argument by Weinberg [18].
We now prove that a unitary local theory can have no

interactions with a ≥ 4. Let the highest value of a in
a theory be amax ≥ 4. The kinematic structure of the
corresponding 3-particle amplitude A3

(

shs

a , 1
h1

b , P hP

c

)

is
uniquely determined by little group scaling as in (10).
Denote the coupling by fabc, where a, b, c are collective
indices for all internal quantum numbers. CPT invari-
ance requires that the theory also includes the ampli-
tude of the CP conjugate states; its coupling is fabc =

f∗
abc. Consider the soft limit of the 4-particle amplitude

A4

(

shs

a , 1h1

b , 2−hs

a , 3−h1

b

)

, whose s1-channel diagram in-

cludes the 3-particle interaction with amax ≥ 4 and its
conjugate, as well as the s2- and s3-channel diagrams,
if relevant. The consistency condition arising from the
absence of the pole 1/zamax−1 in (12) implies

3
∑

k=1

〈sk〉amax−2Bk = 0 , (14)

where B1 =
∑

c fabc[sk]
2hs−amaxÂ

(k)
3 (0) and similarly for

B2 and B3 (if present). Importantly, the Bi are inde-
pendent of |s〉. Applying the operator |p〉ȧ∂|s〉ȧ to (14)
gives

3
∑

k=1

〈kp〉〈sk〉amax−3Bk = 0 . (15)

Since |s〉 and |p〉 are arbitrary, we can choose them to be
|2〉 and |3〉 in which case (15) requires B1 = 0. (Similarly,
one can show B2 = B3 = 0.) Since

B1 ∝
∑

c

fabcfabc =
∑

c

|fabc|
2, (16)

it can vanish only if fabc = 0. This shows that any cou-
plings of interactions with a ≥ 4 must vanish.
For a = 3, the above argument fails because the power

of 〈sk〉 in (15) is no longer strictly positive. Indeed, a = 3
is perfectly fine for gravitons. For soft photons, how-
ever, we have proven that there are no interactions with
amax > 2.
Consider two examples of excluded interactions:

• A 3-particle interaction with hs = 1 and hk = hP = −1
gives a = 4. It may appear strange that such an in-
teraction is excluded here, since the gluon amplitude
A3(1

+, 2−, 3−) certainly exists and is non-vanishing in
Yang-Mills theory. However, this 3-gluon amplitude is
non-vanishing in terms of angle brackets only. To pro-
duce such an amplitude in terms of square brackets only
would require a non-local interaction A2 ∂

�
A [1, 2] and is

therefore not allowed in a local theory. .

• Consider a soft photon case of a = 3: take hs = 1,
hk = −1, hP = 0. This matrix element can be obtained
from the operator �−2FµνF

ν
ρ∂

µ∂ρφ which clearly is not
local.
Since hs+hk+hP = 0 implies a = 2hs+1, we conclude

from the above bounds on a that no 3-point interactions
involving photons, gravitinos, or gravitons are allowed if
the sum of the three helicities vanishes.

IV. SOFT PHOTON THEOREMS

Standard soft photon theorem. Set a = 2 in the
master formula (12) for a soft positive-helicity photon
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(hs = 1). Expanding the n-point amplitude and the de-
nominator factor in small z, there are two contributions
at order z0. One goes as 1/ǫ2 and takes the form

Ân+1(z, ǫ)
∣

∣

z0,1/ǫ2
=

1

ǫ2

∑

k,c

gHk

〈Xk〉

〈Xs〉〈sk〉
An , (17)

where An is the unshifted amplitude, which is a func-
tion of the momenta pk that satisfy n-particle momentum
conservation. The result (17) is the standard leading soft
factor S(0).
The other O(z0) contribution is order 1/ǫ:

Ân+1(z, ǫ)
∣

∣

z0,1/ǫ
=

1

ǫ

∑

k,c

gHk

〈Xs〉
∂zÂn(z)

∣

∣

z=0
. (18)

The shifted amplitude Ân(z) depends on z through the

momentum line P̂sk as well as potentially through the
shifted momenta p̂i and p̂j . In the momentum channel

with P̂ 2
sk = 0, one uses the chain rule to find ∂zÂn(z) =

〈Xs〉
〈sk〉 ∇skÂn(z) with

∇sk ≡ |s]a

(

∂|k]a +
〈ki〉

〈ij〉
∂|j]a −

〈kj〉

〈ij〉
∂|i]a

)

. (19)

The first term gives the familiar subleading soft factor
S(1). The two other terms are consequences of our pre-
scription for taking the soft limit. In contrast to [12]
where the soft limit is taken by defining an extrinsic con-
tinuation of the amplitude off-locus (away from the sup-
port of the momentum conserving delta function), our
soft limit is calculated along an on-locus path defined by
the z = 0 deformation (6). The corresponding soft the-
orems can therefore depend only on intrinsic on-locus
data. The modified differential operators can be under-
stood as an element of tangent space of the momentum
conserving locus.
The strategy employed by Cachazo and Strominger

[12] for acting with the subleading soft-theorem dif-
ferential operator on the delta-function-stripped ampli-
tude is to use momentum conservation to eliminate two
square brackets |i] or |j] from the expression via |i] =

−
∑

k 6=i
〈jk〉
〈ji〉 |k] and similarly for |j]. Now acting with

|s]a∂|k]a on

A
[i,j]
n+1 = An+1

(

. . . , |i−1],−
∑

k 6=i

〈jk〉
〈ji〉 |k], . . . ; |1〉, . . .

)

(20)
gives the same result as acting with our ∇sk of (19) on
An+1 without |i] and |j] eliminated by momentum con-
servation. One sees this by considering the cases k = i, j
or k 6= i, j separately. Therefore the prescription used
in [12] is equivalent to our on-locus differential operator
(19).

Modification of the subleading soft photon the-

orem. The only other 1/ǫ contributions from (12) for

hs = 1 arise from interactions with a = 1. These give

Ân+1(z, ǫ)
∣

∣

z0,1/ǫ
=

1

ǫ

∑

k,c

gHk

[sk]

〈sk〉
Ã(k)

n +O(ǫ0) , (21)

which yields the new subleading soft factor S̃(1)Ãn in (3).
By (11), the coupling must have mass dimension −1 and
hk+hP = 1. The new a = 1 contribution to the sublead-
ing soft theorem involves an n-point amplitude Ãn whose
external states may differ from the n hard states of An+1.
To determine which theories can have these corrections,
one simply goes through the options to find that the only
possible operators are

χγµνFµνχ , φFµνF
µν , φFµν F̃

µν ,

ψµFνργ
µνρχ , hF 2 ,

(22)

where χ is a spin 1/2 field and ψµ is the gravitino field.
The operator hF 2 is shorthand for the 3-particle interac-
tion that arises from the metric expansion of FµνF

µν .
To summarize, we have shown that in effective field

theory the soft theorem for a positive-helicity soft photon
takes the form (1), where S(0) and S(1) are as given in
(4) with Dsk → ∇sk on the momentum conserving locus.

The new soft factor S̃(1) in (3) is unique no matter which
of the possible effective operators in (22) are responsible
for the modification of the soft theorems.

V. SOFT GRAVITON THEOREMS

Standard soft graviton theorem. The familiar terms
(5) of the graviton soft theorem (2) follow from the mas-
ter equation (12) by setting hs = 2 and a = 3. As
we have already seen in (13), the absence of the 1/z2

pole in this expression implies the equivalence princi-
ple: the graviton couples uniformly to all particles with
a universal coupling κ = gHk

. Using this, the 1/z
terms can be rewritten in terms of the Lorentz generators
Jab = i

2

∑

k

(

|k]a∂[k|b + |k]b∂[k|a
)

and terms that vanish
by momentum conservation. Since Jab annihilates the
on-shell amplitudes, the residue of the 1/z pole vanishes
without imposing further constraints. The O(z0) terms
give the soft theorem (2) in a form with

S(0)=κ
∑

k

[sk]〈sk〉
〈Xk〉2

〈Xs〉2〈sk〉2
, S(2) =

κ

2

∑

k

[sk]

〈sk〉
∇2

sk ,

S(1)=κ
∑

k

〈Xk〉[sk]

〈Xs〉〈sk〉
∇sk . (23)

Using the Schouten identity to write e.g. 〈Xk〉
〈Xs〉〈sk〉 =

〈Xy〉
〈Xs〉〈sy〉 − 〈ky〉

〈ks〉〈sy〉 as well as using momentum conser-

vation and annihilation of the amplitude by Jab, one can
show that the soft factors (23) are equivalent to those in
(5) with the replacement Dsk → ∇sk as discussed for the
photon soft theorem above.
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Subleading soft graviton theorem unchanged.

The only way to get a modification to the soft gravi-
ton theorem at order 1/ǫ2 is via interactions with
a = 2. The responsible local operators would have
couplings of mass dimension −2 and give rise to 3-
particle amplitudes A3

(

1+2, 2h2 , 3hP

)

with h2 + hP =
1. Restricting to spin≤ 2, the options are (h2, hP ) =
(2,−1), (32 ,−

1
2 ), (1, 0), (

1
2 ,

1
2 ). The requirement that the

1/z pole in (12) vanishes implies that no such local oper-
ators exist. For the case (h2, hP ) = (2,−1), consider the
4-graviton amplitude A4(1

+2, 2+2, 3−2, 4−2) at quadratic
order in the non-standard effective coupling gc. Only one
factorization channel contributes to 1/z in (12), namely

1+2

2+2

3−2

4−2

−P−1
c P+1

c̄

with implicit sum over possible internal quantum num-
bers c of the exchanged spin-1 state. CPT invariance
requires the couplings of the two interactions to be con-
jugate, so the 1/z pole in (12) will be proportional to
∑

c |gc|
2. Absence of this pole requires gc = 0. The

three other cases of a = 2 interactions can be similarly
excluded. In conclusion, in a unitary CPT-invariant the-
ory there can exist no local operators that modify the
subleading soft graviton theorem.
This result may have relevance to recent discussions

of asymptotic symmetries. In [13] it was shown that the
universality of the subleading soft graviton theorem (2) is
equivalent to the Ward identity of a Virasoro symmetry
of the quantum gravity S-matrix. Our result implies that
the subleading soft graviton theorem, and consequently
the Virasoro symmetry, is unmodified at tree-level in the
presence of local effective operators. In particular this
includes curvature corrections.

Modification of the subsubleading soft graviton

theorem. The only other 1/ǫ contributions from (12) for
hs = 2 arise from interactions with a = 1. By (11), the
coupling must have mass dimension −3 and hk+hP = 2.
The corresponding operators in effective field theory are

φRµνρσR
µνρσ , φRµνρσR̃

µνρσ ,

Rµνρσψργµν∂σχ , RµνρσF
µνF ρσ .

(24)

All of these operators, up to constants, give the same
correction S̃(2)Ãn in (3) to the soft theorem. The mod-
ification due to the operator φR2 was previously noted
by [23, 24].

VI. HIGHER SPIN AND SUPERGRAVITY

Higher spin. The equivalence principle mandates
that any theory containing a massless spin 2 boson
and a particle X of spin j must include a coupling

A3

(

1+2, 2+j
X , 3−j

X

)

with the universal coupling constant.

Taking the soft limit of the helicity +j particle, this cou-
pling has a = 2j−1. As discussed in Section III, the con-
dition for the vanishing of poles in z has no non-trivial
solutions for a > 3, which implies j ≤ 2. Thus, by de-
manding locality and unitarity in the soft limit, we find
that massless higher spin particles cannot interact in any
way with particles of spin ≤ 2 in a theory of gravity. This
is an on-shell version of the results presented previously
in [18, 19, 25].

Supergravity. We learned above that the usual soft
graviton theorems arise from interactions with a =
3, for which hP = −hk. Such interactions include
the standard graviton self interactions, and if we have
spin 3/2 massless fields, the equivalence principle im-

plies that the coupling of A3(1
+2, 2+

3

2 , 3−
3

2 ) must be
the same as that of A3(1

+2, 2+2, 3−2). Let us explore
the soft limit of a positive-helicity spin 3/2 particle.

With hs = 3
2 , the interaction A3(1

+2, 2+
3

2 , 3−
3

2 ) has
a = 2, for which (12) yields a non-trivial constraint
from the absence of a 1/z pole. Consider for example

An+1

(

s+
3

2 , 1−
3

2 , 2+2, 3+2, 4−2, . . . , n−2
)

. The 1/z-pole in
(12) has three contributions with a = 2, namely from
k = 1, 2, 3. (Lines k = 4, . . . , n give a = 6.) The sum
over the three channels k = 1, 2, 3 gives the consistency
condition

0 = [s1]An

(

1−2, 2+2, 3+2, 4−2, . . . , n−2
)

− [s2]An

(

1−
3

2 , 2+
3

2 , 3+2, 4−2, . . . , n−2
)

− [s3]An

(

1−
3

2 , 2+2, 3+
3

2 , 4−2, . . . , n−2
)

.

(25)

This is precisely the MHV version of the N = 1 super-
symmetric Ward identities [26, 27] (see also [28]). Thus
we reached the well known conclusion that particles of
spin 3/2 couple to gravity supersymmetrically. The role
of the usual reference spinor in the SUSY Ward identities
is here played by the soft momentum.
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