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We show that neutral anyonic excitations have a signature in spectroscopic measurements of materials: the
low energy onset of spectral functions near the threshold follow universal power laws with an exponent that
depends only on the statistics of the anyons. This provides a route, using experimental techniques such as
neutron scattering and tunneling spectroscopy, for detecting anyonic statistics in topologically ordered states
such as gapped quantum spin liquids and hypothesized fractional Chern insulators. Our calculations also explain
some recent theoretical results in spin systems.

Quantum mechanics allows for the possibility of phases not
characterized by symmetry breaking, including the complex
of the fractional quantum Hall effects[1, 2]. These are char-
acterized from a theoretical point of view by subtle charac-
teristics of their quantum entanglement known as topologi-
cal order[3–5].This phenomenon may also appear in quan-
tum spin liquids, of which we have several candidates[6–8].
From an experimental point of view the most interesting phe-
nomenon in such phases is not the lack of long-range order –
a negative characteristic – but rather the existence of fraction-
alized quasiparticle excitations that have anyonic statistics[9–
11]. In this paper we suggest a way to measure these quan-
tum statistics through the threshold behavior of spectroscopic
cross-sections for creating these excitations. We will focus on
gapped phases with abelian excitations.

It is interesting to ask how we can measure the phases that
anyons accumulate when they wind around one another; is it
necessary to guide microscopic particles along specific paths
to make sure they circle around one another a certain num-
ber of times? Proposals for methods can be tested soon since
anyons have been proven to exist in theoretical states that
model the fractional quantum Hall effect and possibly spin
liquids, see [12] for theoretical calculations in model wave
functions and see [13] for calculations in realistic states uti-
lizing degenerate ground states on a torus. Experimentally,
there have been attempts using interferometers with two arms
enclosing trapped anyons[14]; and other proposals such as
measuring non-abelian statistics through the entropy associ-
ated with the quasiparticles[15]. However, neutron scattering,
which measures the dynamical correlation function, is a much
more established technique for magnetic materials, like the
candidates for spin liquids. Neutron scattering can create mul-
tiple excitations, which would then move around one another
(in a partly random way), and the statistics could be hidden in
the time dependence of this process.

Neutron scattering has already been used to demonstrate
signatures of fractionalization in candidate spin liquids[16–
18]. Here the characteristic feature is the absence of sharp

dispersive lines (e.g., magnons). They are replaced by a broad
continuum, interpreted as arising from the creation of multiple
fractionalized quasiparticles, leading to a spread in energies
because of the different ways of sharing momentum among
them. Thus, it seems that at low energies, several fractional
particles are automatically created. How can one tell whether
these particles have fractional "anyon" statistics and accumu-
late phase factors as they braid around one another, without
controlling them?

In classic work, Wigner demonstrated that the onset be-
havior of cross-sections near production thresholds is often
dominated by long-range interactions[19]. Anyons effectively
have a long-range interaction due to the statistical phases - so
it seems possible that the statistical phase can be revealed in
such measurements when the anyons do not have more dom-
inant long-range interactions like Coulomb interactions. We
derive the behavior of the cross-section near threshold for two
anyons analytically, showing that there is a distinct power law
that reveals the nature of the anyons. The structure factor is
given by

S(~q, ω) ∝ (ω −∆)α (1)

where α is the statistical parameter for the anyons (ranging
from 0 for bosons to 1 for fermions), ∆ is the minimum en-
ergy needed to create two anyons at a given wavevector. When
α = 0, short-range interactions modify the power-law. We
also perform numerics to verify the robustness of the behavior
to interactions. Extending our results, we explore the corre-
sponding behavior for three particles. This too displays an in-
teresting dependence on the statistics, reflecting the braiding
of three particles. We then discuss which types of excitations
one could identify using this method experimentally in spin
liquids. We will also use our method to re-derive recent re-
sults for the dynamic structure factor in topologically ordered
phases.

Set-up and eigenvalue problem We consider a 2D system
in which gapped fractionalized excitations can be created by
the action of a local operator (Fig. 1). For example, we can
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Figure 1. (a) In phases with topological order, scattering processes
can create fractionalized anyonic excitations above some threshold
energy. (b) The statistics of the excitations mediate long-range ef-
fects between them

consider inelastic neutron scattering on a gapped spin liq-
uid, resulting in the creation of n fractionalized excitations,
which in general obey anyonic exchange and mutual statistics.
The double differential scattering cross-section d2σ/dΩdω
thus obtained is proportional to the dynamic structure factor
Sαβ(~q, ω), defined as the Fourier-transform of the correla-
tion function 〈Sα(r, t)Sβ(0, 0)〉 where α, β = {x, y, z}[20].
Since the excitations are gapped, we can focus on the effective
n-particle system to calculate S(~q, ω) at energies below those
involving additional excitations.

An anyon can be viewed[10] as a composite particle car-
rying “electric” charge and attached to an infinitesimal “mag-
netic” flux tube (where the charge and flux pertain to an emer-
gent gauge field, not ordinary electromagnetism). The braid-
ing phases arise as effective Aharonov-Bohm phases as these
particles are exchanged or taken around one another. We will
work in the magnetic/boson gauge, where the Hamiltonian
acts on bosonic wavefunctions and the statistics is encoded in
the Hamiltonian as an interaction through minimal coupling
of the gauge field ~a.

For the case of two identical fractionalized excitations[21],
~a = h̄cα

q ∇θ where θ is the angle between the particles, q is
the charge and α is the statistics parameter which varies from
0 for bosons to 1 for fermions. Thus, for two excitations with
a quadratic dispersion, the effective Hamiltonian is

H =
P 2
~R

4m
+
p2
r

m
+

(pφ − h̄α)2

mr2
+ V (r, φ) (2)

in the center of mass frame where ~R is the center of mass co-
ordinate and m, r, φ are the mass and relative co-ordinates of
the particles, and V (r, φ) is the effective interaction between
the two particles.

One can show (see below and Supplementary Information)
that the behavior of the cross-section close to the threshold
is not altered by the potential V except for bosons. There-
fore we temporarily set V (r, φ) = 0. Then we can solve the
eigenvalue problem for Hr using separation of variables. The
complete normalized solution to the eigenvalue problem for
H = HR +Hr is

Ψ(~R, r, φ) ∼
√

k

L3
J|l−α| (kr) exp(ilφ) exp(i ~K · ~R) (3)

where l = 2n, n ∈ Z; relative momentum k =
√

Erm
h̄2 , center

of mass momentum
∣∣∣ ~K∣∣∣ = 2

√
ERm
h̄2 , total energy E = Er +

ER and J|l−α| is a Bessel function of the first kind. The box
normalization of

√
k/L3 is strictly only valid when k > 0 and

in the large L limit. We see that different sorts of anyons have
different probabilities to be close to one other. In particular,
bosons are the only particles which can be at the same point
(r = 0) since J|l−α|(0) > 0 only if l = α = 0; other anyons
satisfy a hard-core condition for all l. Spectral functions for
creating localized excitations can be expected to show signs of
these differences, which reflect repulsive angular momentum
barriers.

Spectral function We consider the Lehmann
representation[22] of a zero temperature spectral func-
tion S( ~Q, ω) associated to a spectroscopic measurement

S( ~Q, ω) =
∑
|ψf 〉

∣∣∣〈ψf |Ô~Q|ψi〉
∣∣∣2 δ(ω + ωi − ωf ) (4)

Here, |ψf 〉 are two anyon energy eigenstates and |ψi〉 is the
topologically ordered ground state. We will look at the be-
havior close to a momentum ~q with quadratic dispersion. We
assume the operator Ô(~R) creates a superposition of all the
states of two anyons whose center of mass is located at ~R
and that are separated from each other by a distance a, i.e.,
Ô(~R)|ψi〉 =

∫
dφ|~R, a, φ〉. This is motivated from the cre-

ation of excitations in lattice models with topological order
such as the toric code where a local operator such as σz cre-
ates excitations on neighbouring sites. Breaking rotational in-
variance doesn’t affect the final answer at low energies where
s-wave eigenstates (l = 0) dominate. In general, Ô(~R) cre-
ates some local perturbation to the many-body ground state
(like a certain spin texture) and the matrix element reflects the
overlap between this state and two anyon many-body eigen-
states. However, it can be shown that the resulting energy
dependence near the threshold is insensitive to details (See
Supplementary Information). We set h̄ = 1 henceforth.

S (~q, ω)

=c
∑
|ψf 〉

∣∣∣∣∫ d~Rdφei~q·
~R〈ψf |~R, a, φ〉

∣∣∣∣2 δ(ω +
k2

m
− |

~K|2
4m
−∆)

(5)

=cmJ2
α(a
√

Ω)Θ (Ω) (6)

≈cm(a2Ω)αΘ (Ω) (7)

where Ω = m(ω − ∆) − |~q|2/4, ∆ is the energy gap to the
threshold of two-particle excitations, and in the last step we
have made a low-energy approximation. An infrared cutoff is
set to avoid spurious divergences and c is an energy indepen-
dent constant.

Above the gap, the cross-section for bosons has a sharp on-
set whereas fermions show a linear increase with energy and
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semionic excitations (α = 0.5) show a characteristic square
root dependence. It is important to note that the difference
arises due to the effect of statistics on the matrix elements and
is not an effect from the density of states. This can be seen
easily for bosons and fermions, where the two-particle density
of states is the same in the thermodynamic limit, since Pauli
exclusion for fermions only excludes a one-dimensional curve
in the three dimensional constant energy manifold available to
two bosons.

Although we have only considered the case of identical ex-
citations, the results generalize to the case of two distinct par-
ticles interacting through mutual statistics. There are a few
minor differences, such as the presence of two distinct masses
and the ability of (formerly)“bosonic” angular momentum l to
assume odd values.

Universality and effect of interactions between anyons
These results apply more generally than appears from the cal-
culation. The Schrodinger equation applies to isolated gapped
excitations as long as they have a quadratic dispersion which
we get near threshold. In general, the anyons will interact at
short distance, i.e., V (r, φ) 6= 0. However, in the absence
of resonances, weak short-range interactions will generically
not affect the power law of the dynamic structure factor at
low energies. This can be seen from the fact that the anyon
eigenstates are rigid when the anyons are close together, and
depend on the value of the kinetic energy only at large dis-
tances, where interactions are not important. This means that
S (~q, ω) changes by only an overall energy-independent factor
near threshold (See Supplementary Information).

However, bosons behave differently in the presence of in-
teractions since the non-interacting point is fine-tuned. Put
differently, since bosons lack a statistical repulsion that pre-
vents them from getting close to each other, they are suscepti-
ble to short-range repulsive interactions. To quantify this, we
obtain S (~q, ω) for a system with two excitations which are
hard-core bosons, i.e., bosons which interact with a hard-core
potential V (r) which is infinite for r ≤ b and zero everywhere
else. The general form of the eigenstates is

Ψ (R, r, φ) = exp(i ~K · ~R) exp(ilφ) [AlJl (kr) +BlNl (kr)] ,
(8)

where we may focus on l = 0 at low energies.

The effect of the potential can be incorporated into a phase-
shift defined by tan δ0 = −B0/A0 = J0(kb)/N0(kb). Nor-
malization of the eigenstates yields A0 = cos δ0

√
k/2L

where L is the radius of the system. We can now obtain
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Figure 2. (a) Two particle spectral function from exact diagonaliza-
tion on a 600 × 600 square lattice for fermions with nearest neigh-
bor repulsion U and next-nearest neighbor repulsion V . The high
energy behavior is drastically affected by interactions, but the low-
energy linear onset is unchanged as seen in the log-log plot on the top
right where the exponents for all three cases is 0.95 (c) S (0, ω) for
non-interacting bosons (b), semions (s), fermions (f), and hard-core
bosons (hcb) on a 20 × 20 lattice. (d) Density of states for bosons
and fermions.

S (~q, ω) using Eq. (8)

S (~q, ω)

=
cm

1 + tan2 δ0

∣∣∣J0

(
a
√

Ω
)
− tan δ0N0

(
a
√

Ω
)∣∣∣2 Θ (Ω)

(9)

≈
cm log2

(a
b

)
(

log

[
Ωb2

4

]
+ 2γ

)2

+ π2

Θ (Ω) (10)

where Ω and a are the same as in the free anyons case, γ
is the Euler-Mascheroni constant and we have made a low-
energy approximation in the last step. We see that the hard-
core interaction drastically changes the low-energy behavior
for bosons, and one can also show that any finite repulsive in-
teraction produces a similar effect. A corresponding analysis
for semions and fermions shows that interactions do not affect
their low-energy behavior, as expected.

Long-range interactions can however affect the low-energy
behavior depending on how fast they decay. For power-law
interactions of the form 1/rβ , the threshold behavior is un-
changed when β > 2 since the interaction is still dominated
by the repulsive angular momentum (Eq. 2) at large distances
[19]. However, Coulomb interactions (if present) will domi-
nate and wash out the effects due to the statistics.

Numerics We check some of the results numerically by
considering an effective model of two anyons hopping on a



4

square lattice which can be constructed from a many-body
system by projecting into the two anyon subspace. We as-
sume a local operator creates anyons on neighbouring sites
of the lattice and perform exact diagonalization to obtain the
corresponding spectral function. Fig. 2(a) shows S (0, ω) for
fermions on a 600 × 600 square lattice interacting with near-
est neighbor repulsion U and next-nearest neighbor repulsion
V . Interactions drastically affect the high-energy behavior,
but leave the low-energy linear onset unchanged as expected
for fermionic excitations. The linear onset can be seen clearly
in the log-log plot of Fig. 2(b) where the exponent for all three
cases is approximately 0.95 with the difference between them
being less than 0.01. The exponents slowly converge towards
the expected value of 1 as the system size is increased.

We also obtain the spectral function for general anyons
which are modeled as a charges living on the sites of the
lattice which move together with fluxes living on adjacent
plaquettes[23]. Since we use periodic boundary conditions,
there are large gauge transformations of the vector poten-
tial which result in doubling the Hilbert space for semions.
Fig. 2(c) shows S (0, ω) for particles of various statistics. Al-
though we are restricted to small system sizes and addition-
ally the presence of a broadening which occurs as a result of
smoothing discrete data points (over an ε = 0.1 range of en-
ergies in the 20 × 20 system as opposed to ε = 0.005 for the
previous 600 × 600 system), the behavior at low energies is
qualitatively similar to the analytic predictions for two anyons
in the continuum (Eq. 7, 10). Bosons shows a decreasing be-
havior which fits in with the fact that their low-energy depen-
dence is dominated by J0(x). Extracting the power-law for
semions, we get an exponent of around 0.45 which fits in with
the expected square root dependence. As expected, the den-
sity of states (Fig. 2(d)) is the same for the different statistics.

Three particles We now consider a system with three
identical fractionalized excitations (n = 3) where we see non-
trivial effects due to the braiding of three particles around
each other. Unlike bosons and fermions, a system of three
anyons is no longer exactly solvable even without interactions
(V (r, φ) = 0), but the low-energy dependence of S (~q, ω) can
still be obtained for certain anyons. After separating out the
center of mass motion, the resulting system[24] can be de-
scribed using hyper-spherical coordinates consisting of a ra-
dial co-ordinate ρ and three angular co-ordinates θ, φ, ψ. The
eigenfunctions of the angular equation can be complicated,
since they are not determined by symmetry as in the two-
particle case. The angular form of the wave function can be
related (see Supplementary Information) to the ground state of
the same anyons in a harmonic oscillator potential which has
been studied[24]. In some cases this ground state can be found
analytically, while in other cases the eigenvalue is irrational.

In particular, for the interesting case of three fractionalized
particles with α = 1

3 , the eigenstates are ψ (ρ, θ, φ, ψ) =
J2(
√

2Eρ)
ρ g (θ, φ, ψ) where E is the energy of the relative mo-

tion and g is a function which is independent of the energy.
This leads to a threshold behavior of S (~q, ω) which increases

as (ω −∆)
2.

Applications Our results (eq. (7) and (10)) could be used
to study the statistics of excitations in a spin liquid or a
fractional Chern insulator by measuring the scattering cross-
section as a function of energy close to the threshold. At low
energies, the excitations would be described by Schrodinger’s
equation (as assumed above) because the dispersion can
generically be expanded to quadratic order around the mini-
mum. In practice, one needs temperatures much lower than
the gap and a mean free path much longer than the wave-
length. Then, one can measure the structure factor slightly
above the threshold, so that disorder which dominates the be-
havior near threshold can be neglected, but not so far above
the threshold that the universal behavior is lost.

Consider an experiment on a chiral spin liquid[25]. They
have one type of topological excitation, which are semions.
A single semion is not accessible from the ground state by
local processes, such as inelastic scattering by neutrons due to
the conservation law that the total topological charge must be
trivial. However, a neutron could excite two semions because
semions are their own antiparticles, which then leads to the
dramatic consequence of a square-root onset with energy at
the threshold.

In the case of materials in the toric code universality class
(i.e. Z2 spin liquids), one could also measure anyonic statis-
tics. The possible topological charges of excitations are m
and e (which are bosons but have a mutual phase of −1) and
a composite em which is a fermion.

The most interesting thresholds (consistent with the topo-
logical conservation law requiring e’s and m’s to be created
in pairs) are production of an (me)− (me) pair, which would
show a linear onset because me is a fermion, and a triple,
e−m− (me). (The pairs m−m and e− e are both mutual
bosons, so their structure factor would have the same form as
that possessed by local excitations such as two triplon exci-
tations in a VBS state.) There are two difficulties here; first,
there may not be a stable particle of type me (in a spin liquid,
the stable spinon might have the type either m or me). Sec-
ond, the excitations also carry spin; therefore the pair of me
particles can either be in a triplet channel or a singlet chan-
nel (which would have the same behavior as a pair of bosons).
This can be avoided with a weak magnetic field to favor par-
allel spins.

It is also appropriate to consider the quantum Hall effect,
for which the propagator of a pair of anyons is calculated in
Ref.[26]. Universality does not emerge in a straightforward
way for this case because the quasiparticles in such states are
generally electrically charged. The Coulomb force then for-
mally dominates any effective statistical force at large dis-
tances, and it will be quantitatively significant even if it is
weakly screened. In addition, the motion of charged quasipar-
ticles is inhibited by the background magnetic field. The pres-
ence of the magnetic field causes the appearence of discrete
responses in spectroscopy instead of a threshold and addi-
tionally the quasiparticles are hindered from moving far apart
enough to see the universal effects of the statistics. These
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problems are avoided in fractional Chern insulators[27] where
we can expect to see the universal threshold behavior.

There are also measurable signatures in tunneling spec-
troscopy which can involve neutral particles or cases where
the Coulomb interaction between the excitations is screened.
We expect a different exponent here since the particles do not
have a well-defined momentum any more. For the simplest
case where the tunneling tip resembles a Fermi liquid, we find
that the tunneling current goes as (ω −∆)1+α.

Several recent works[17, 28–30] contain calculations of dy-
namic structure factors in topologically ordered phases of spin
systems. We now consider two prominent examples. Qi et
al[28] describe a bosonic Z2 spin liquid on the triangular lat-
tice where the low-energy behavior near the bottom of the
band is obtained through a large-N analysis of a sigma model.
There is a constant onset above the gap for non-interacting
bosonic spinons which changes to an inverse-log behavior on
adding interactions, exactly as expected. For the case of the
Q1 = Q2 spin liquid on the kagome lattice[31], the spinons
have a quadratic dispersion around the high symmetry M point
and the structure factor[17] there shows a sharp onset above
the gap, as expected for bosonic excitations.

Discussion We have shown that the production rates for
fractionalized excitations (for example in neutron scattering
or tunneling experiments) contain a signature of anyons that
allows one to measure the statistical parameter of the anyons
experimentally: the cross-section follows a power law deter-
mined by this parameter. This may also be accessible in sys-
tems of ultra-cold atoms in optical lattices following recent
ideas of how to access their spectral functions[32].
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