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A central result that arose in applying information theory to the stochastic thermodynamics
of nonlinear dynamical systems is the Information-Processing Second Law (IPSL): the physical
entropy of the universe can decrease if compensated by the Shannon-Kolmogorov-Sinai entropy
change of appropriate information-carrying degrees of freedom. In particular, the asymptotic-rate
IPSL precisely delineates the thermodynamic functioning of autonomous Maxwellian demons and
information engines. How do these systems begin to function as engines, Landauer erasers, and error
correctors? Here, we identify a minimal, inescapable transient dissipation engendered by physical
information processing not captured by asymptotic rates, but critical to adaptive thermodynamic
processes such as found in biological systems. A component of transient dissipation, we also iden-
tify an implementation-dependent cost that varies from one physical substrate to another for the
same information processing task. Applying these results to producing structured patterns from
a structureless information reservoir, we show that “retrodictive” generators achieve the minimal
costs. The results establish the thermodynamic toll imposed by a physical system’s structure as it
comes to optimally transduce information.
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Introduction. Classical thermodynamics and statisti-

cal mechanics appeal to various reservoirs—reservoirs of

heat, work, particles, and chemical species—each charac-

terized by unique, idealized thermodynamic properties.

A heat reservoir, for example, corresponds to a physical

system with a large specific heat and short equilibration

time. A work reservoir accepts or gives up energy without

a change in entropy. Arising naturally in recent analyses

of Maxwellian demons and information engines [1–17], in-

formation reservoirs have come to play a central role as

idealized physical systems that exchange information but

not energy [18–20]. Their inclusion led rather directly to

an extended Second Law of Thermodynamics for com-

plex systems: The total physical (Clausius) entropy of

the universe and the Shannon entropy of its information

reservoirs cannot decrease in time [4, 18, 21–23]. We re-

fer to this generalization as the Information Processing

Second Law (IPSL) [24].

A specific realization of an information reservoir is a

tape of symbols where information is encoded in the sym-

bols’ values [25]. To understand the role that informa-

tion processing plays in the efficiencies and bounds on

thermodynamic transformations the following device has

been explored in detail: a “ratchet” slides along a tape

and interacts with one symbol at a time in presence of

heat and work reservoirs [26]. By increasing the tape’s

Shannon entropy, the ratchet can steadily transfer energy

from the heat to the work reservoirs [4]. This violates the

conventional formulation of the Second Law of Thermo-

dynamics but is permitted by the IPSL.

An information ratchet can leverage the structure of

the information reservoir by traversing the tape in many

different ways [7]. However, we consider ratchets that

run along the tape unidirectionally, where there’s a clear

transformation from input to output domain. This is

effectively a transformation of the information encoded

in the tape from input to output, so the ratchet is an

information transducer. Recent models of autonomous

Maxwellian demons and information engines are spe-

cific examples of information transducers. From an

information-theoretic viewpoint, these transducers are

memoryful communication channels from input to out-

put symbol sequences [27]. Information transducers are

also similar to Turing machines in design [28], except

that a Turing machine need not move unidirectionally.

More importantly, an information transducer is a physi-

cal thermodynamic system and so is typically stochastic

[29]. Despite this difference, like a Turing machine a

transducer can perform any computation, if allowed any

number of internal states.

Previous analyses on the thermodynamics of informa-

tion processing largely focused on the minimal asymp-

totic entropy production rate for a given information

transduction; see Eq. (2) below. The minimal rate is

completely specified by the information transduction;

there is no mention of any cost due to the transducer
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itself. In contrast, this Letter first derives an exact ex-

pression for the minimal transient entropy production

required for information transduction; see Eq. (3). This

transient dissipation is the cost incurred by a system as it

adapts to its environment. It is related to the excess heat

in transitions between nonequilibrium steady states [30–

32]. Moreover, hidden in this minimal transient dissi-

pation, we identify the minimal cost associated with the

transducer’s construction; Eq. (4) below. Among all pos-

sible constructions that support a given computational

task, there is a minimal, finite cost due to the physical

implementation.

The Letter goes on to consider the specific case of

structured pattern generation from a structureless in-

formation reservoir—a tape of independent and identi-

cally distributed (IID) symbols. While the transducer

formalism for information ratchets naturally includes in-

puts with temporal structure, most theory so far has con-

sidered structureless inputs [4, 5, 7, 26, 33, 34]. This

task requires designing a transducer that reads a tape of

IID symbols as its input and outputs a target pattern.

Employing the algebra of Shannon measures [35] and

the structure-analysis tools of computational mechanics

[36, 37], we show that the minimum implementation-

dependent cost is determined by the mutual information

between the transducer and the output’s “past”—that

portion of the output tape already generated. The result

is that a maximally efficient implementation is achieved

with a “retrodictive” model of the structured pattern

transducer. Since the retrodictor’s states depend only on

the output future, it only contains as much information

about the output’s past as is required to generate the

future. As a result it has a minimal cost proportional

to the tape’s excess entropy [37]. Such thermodynamic

costs affect information processing in physical and biolog-

ical systems that undergo finite-time transient processes

when adapting to a complex environment.

Information Processing Second Law. Consider a

discrete-time Markov process involving the transducer’s

current state XN and the current state of the information

reservoir YN it processes. The latter is a semi-infinite

chain of variables over the set Y that the transducer pro-

cesses sequentially. YN is the Nth tape element, if the

transducer has not yet processed that symbol; it is de-

noted Y ′N , if the transducer has. We call YN an input and

Y ′N an output. The current tape YN = Y ′0:NYN :∞ con-

catenates the input tape YN :∞ = YNYN+1YN+2 . . . and

output tape Y ′0:N = Y ′0Y
′
1 . . . Y

′
N−2Y

′
N−1. The informa-

tion ratchet performs a computation by steadily trans-

ducing the input tape process Pr(Y0:∞) into the output

tape process Pr(Y ′0:∞).

The IPSL sets a bound on the average heat dissipation

Q0→N into the thermal reservoir over the time interval

t ∈ [0, N ] in terms of the change in state uncertainty

of the information ratchet and information reservoir [26,

App. A]:

〈Q0→N 〉
kBT ln 2

≥ H[X0,Y0]−H[XN ,YN ], (1)

where kB is Boltzmann’s constant, T the absolute tem-

perature of the reservoirs, H[Z] the Shannon (informa-

tion) entropy of the random variable Z.

To date, studies of such information engines developed

the IPSL’s asymptotic-rate form:

lim
N→∞

1

N

〈Q0→N 〉
kBT ln 2

≥ −(h′µ − hµ) , (2)

where h′µ (hµ) is the Shannon entropy rate of the out-

put (input) tape [38] and, in addition, we assume the

transducer has a finite number of states [26].

The asymptotic IPSL in Eq. (2) says that thermal fluc-

tuations from the environment can be rectified to either

perform work or refrigerate (on average) at the cost of

randomizing the information reservoir (〈Q〉 < 0 when

h′µ > hµ). Conversely, an information reservoir can be

refueled or ‘charged’ back to a clean slate by erasing its

Shannon-entropic information content at the cost of emit-

ting heat.

A crucial lesson in the physics of information is that

Eq. (2) takes into account all orders of temporal correla-

tions present in the input tape as well as all orders of cor-

relation that the transducer develops in the output tape.

An approximation of Eq. (2), based on the inclusion of

only lowest-order (individual symbol) statistics, had been

used to interpret the thermodynamic functioning of the

original models of autonomous Maxwellian Demons [4, 5].

Later, Eq. (2) itself was used to identify a region in an

engine’s phase diagram that is wrongly characterized as

functionally useless by the approximation, but actually

is a fully functional eraser. In turn, this motivated the

construction of an explicit mechanism by which temporal

correlations in the input sequence can be exploited as a

thermodynamic resource [26]. Equation (2) also led to

(i) a general thermodynamic framework for memory in

sequences and in transducers and (ii) a thermodynamic

instantiation of Asbhy’s law of requisite variety—a cy-

bernetic principle of adaptation [24].

Equation (2), however, does not account for correla-

tions between input and output tapes nor those that arise

between the transducer and the input and output. As we

now show, doing so leads directly to predictions about
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the relative effectiveness of transducers that perform the

same information processing on a given input, but em-

ploy different physical implementations. Specifically, the

retrodictive generator is the thermodynamically simplest

implementation, not computational mechanics’ optimal

predictor—the ε-machine [36] [39].

Subtracting the IPSL’s asymptotic-rate version

(Eq. (2)) from the IPSL’s original (Eq. (1)) leads to

a lower bound on the transient thermodynamic cost

〈Qtran〉 of information transduction, the Letter’s central

result:

〈Qtran〉min

kBT ln 2
≡ lim
N→∞

[ 〈Q0→N 〉min

kBT ln 2
+N(h′µ − hµ)

]
= −E′ + I[

←−
Y ′;
−→
Y ] + I[X0;

←−
Y ′,
−→
Y ] . (3)

Here, E′ is the output sequence’s excess entropy [40],

which is the mutual information I[
←−
Y ′;
−→
Y ′] between the

output past and output future. In these expressions

we use arrows to describe past and future random vari-

ables.
←−
Y ′ is the random variable for output past—the

sequence of output symbols that have been produced by

the transducer—and
−→
Y ′ is the output future—the se-

quence of output symbols that have not yet been pro-

duced. Similarly, the input past random variable
←−
Y is the

sequence of input variables that have already interacted

with the transducer and have been transformed into an

output. While the input future random variable
−→
Y is

the sequence of input variables that have yet to interact.

Finally, X0 is the random variable for the transducer’s

state after sufficiently long time, such that
←−
Y ′ and

←−
Y

are both effectively semi-infinite. The expression itself

comes from shifting to the ratchet’s reference frame, so

that at time N state XN becomes X0 and the currently

interacting tape symbol is relabeled Y0, rather than YN .

(Equation (3) is proved in the Supplementary Materials.)

From it we conclude that the minimum transient cost

has three components. However, they are subtly interde-

pendent and so we cannot minimize them piece-by-piece

to maximize thermodynamic efficiency. For instance, the

first term in the transient cost is a benefit of having corre-

lation between the output past and output future, qual-

ified by E′. Without further thought, one infers that

outputs that are more predictable from their past, given

a fixed entropy production rate, are easier to produce

thermodynamically. However, as we see below when an-

alyzing process generation, the other terms cancel this

benefit, regardless of the output process. Perhaps coun-

terintuitively, the most important factor is the output’s

intrinsic structure.

The remaining two terms in the transient cost are the

cost due to correlations between the input and the out-

put, quantified by I[
←−
Y ′;
−→
Y ], and the cost due to cor-

relations between the transducer and the entire input-

output sequence, quantified by I[X0;
←−
Y ′,
−→
Y ]. The last

term, which through X0 depends explicitly on the trans-

ducer’s structure, shows how different implementations

of the same computation change energetic requirements.

Said differently, we can alter transducer states as

well as their interactions with tape symbols, all the

while preserving the computation—the joint-input out-

put distribution—and this only affects the last term in

Eq. (3). For this reason, we call it the minimal imple-

mentation energy cost Qimpl given a transducer:

(kBT ln 2)−1〈Qimpl〉min = I[X0;
←−
Y ′,
−→
Y ] . (4)

This bound on the cost applies beyond predictively gen-

erating an output process [33]—it applies to any type

of input-output transformation. The minimum imple-

mentation energy cost is not guaranteed to be achiev-

able, but, like Landauer’s bound on the cost of erasure

[22, 23], it provides a guidepost for an essential physical

cost of information processing. By choosing an imple-

mentation with the least information shared between the

transducer’s state and the joint state of the output past

and input future, we minimize the unavoidable cost of

computation. Moreover, this allows us to show how to

achieve the minimum dissipation by employing physical

implementations of pattern generators [33].

Generating Structured Patterns. Paralleling Ref.

[26], we now consider the thermodynamic cost of gen-

erating a sequential pattern of output symbols from a

sequence of IID input symbols. Since the latter are un-

correlated and we restrict ourselves to nonanticipatory

transducers (i.e., transducers with no direct access to fu-

ture input [27]), the input future is statistically indepen-

dent of both the current transducer state and the output

past: I[X0;
←−
Y ′,
−→
Y ] = I[X0;

←−
Y ′] and I[

←−
Y ′;
−→
Y ] = 0. As a

result, we have the following simplifications for the mini-

mal transient dissipation and implementation costs (from

Eq. (3)):

(kBT ln 2)−1〈Qtran〉min = I[X0;
←−
Y ′]−E′ (5)

(kBT ln 2)−1〈Qimpl〉min = I[X0;
←−
Y ′] . (6)

The fact that the input is IID tells us that the trans-

ducer’s states are also the internal states of the hidden

Markov model (HMM) generator of the output process

[26, 27]. This means that the transducer variable X0

must contain all information shared between the output’s

past
←−
Y ′ and future

−→
Y ′ [40, 41], as shown in the informa-
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H[
 �
Y 0]

H[
�!
Y 0]

/ h0
µ` / h0

µ`

hQimplimin

kBT ln 2

E0

H[X0]

FIG. 1. Shannon measures for physical information
transduction—general case of nonunifilar transducers: Trans-

ducer output past
←−
Y ′ and output future

−→
Y ′ left (blue) and

right (red) ellipses, respectively; shown broken since the fu-

ture and past entropies H[
←−
Y ′] and H[

−→
Y ′] diverge as hµ`, with

` being the length of past or future, respectively. H[X0] illus-
trates the most general relationship the generating transducer
state X0 must have with the process future and past. Imple-

mentation cost I[X0;
←−
Y ′] = 〈Qimpl〉min/kBT ln 2 is highlighted

by a dashed (red) outline.

tion diagram in Fig. 1. (Graphically, the E′ atom is en-

tirely contained within H[X0].) There, an ellipse depicts

a variable’s Shannon entropy, an intersection of two el-

lipses denotes the mutual information between variables,

and the exclusive portion of an ellipse denotes a vari-

able’s conditional entropy. For example, E′ = I[
←−
Y ′;
−→
Y ′]

is the intersection of H[
←−
Y ′] and H[

−→
Y ′]. And, the left-

most crescent in Fig. 1 is the conditional Shannon en-

tropy H[
←−
Y ′|X0] of the output past

←−
Y ′ conditioned on

transducer state X0. The diagram also notes that this

information atom, which is in principle infinite, scales as

hµ`, where ` is the sequence length.

As stated above, Fig. 1 also shows that the ratchet

state statistically shields past from future, since the

ratchet-state entropy H[X0] (green ellipse) contains the

information E′ shared between the output past and fu-

ture (overlap between (left) blue and right (red) ellipses).

Thus, the implementation cost I[X0;
←−
Y ′], highlighted by

dashed (red) outline, necessarily contains the mutual in-

formation between the past and future. The Supplemen-

tary Materials show that both the transient and asymp-

totic bounds—Eqs. (2) and (5), respectively—are achiev-

able through an alternating adiabatic and quasistatic

protocol. We are now ready to find the most efficient

thermodynamic implementations for a given computa-

tion.

Consider first the class of predictive, unifilar informa-

tion transducers; denote their states R+
0 . Unifilarity here

says that the current state R+
0 is restricted to be a func-

tion of the semi-infinite output past: the ratchet’s next

state R+
0 is unambiguously determined by

←−
Y ′.

E0

H[
 �
Y 0]

H[
�!
Y 0]

�+ ��/ h0
µ` / h0

µ`

H[R+
0 ]

H[R�
0 ]H[S�

0 ]

H[S+
0 ]

FIG. 2. Optimal physical information transducers—
predictive and retrodictive process generators: Process gen-
erator variables, predictive states R and causal states S, de-
noted with green ellipses. Being the minimal set of predic-
tive states, causal states S are contained within the set of
general predictive states R. A given process has alternative
unifilar (R+

0 or S+
0 ) and counifilar generators (R−0 or S−0 ).

Component areas are the sigma-algebra atoms: conditional
entropies—entropy rate hµ and crypticities χ+ and χ−—and
a mutual information—the excess entropy E′. Since the state
random variables R+

0 and S+
0 are functions of the output past

←−
Y ′, their entropies are wholly contained within the past en-

tropy H[
←−
Y ′]. Similarly, counifilar generators, denoted by the

random variables R−0 and S−0 , are functions of output future
−→
Y ′. Thus, their entropies are contained within the output

future entropy H[
−→
Y ′]. The ε-machine generator with causal

states S+
0 is the unifilar generator with minimal Shannon en-

tropy (area). The random variable R−0 realizes the current
state of the minimal counifilar generator, which is the time
reversal of the ε-machine for the time-reversed process [42].
Transducers taking the form of any of these generators pro-
duce the same process, but structurally distinct generators
exhibit different dissipations and thermodynamic implemen-
tation costs.

A unifilar information transducer corresponds to the

case where the transducer state entropy H[X0 = R+
0 ] has

no area outside that of the output past’s entropy H[
←−
Y ′].

(See Fig. 2.) As evident there, the implementation cost

I[X0;
←−
Y ′] is the same as the transducer’s state uncer-

tainty—the Shannon entropy H[X0 = R+
0 ]. Thus, ac-

cording to Eq. (6) the thermodynamically most efficient

unifilar transducer is that with minimal state-uncertainty

H[X0 = S+0 ]—the entropy of the ε-machine causal states

S+0 of computational mechanics [37], which comprise the

minimal set of predictive states [43]. This confirms the

result that, if one is restricted to predictive generators,

simpler is better [33].

Critically, there are further connections with computa-

tional mechanics that, by removing the restriction, lead

to substantial generalizations. For ε-machine information

transducers with causal states S+0 , the mutual informa-

tion between the transducer and the output past is the

output process’ statistical complexity: I[S+0 ;
←−
Y ′] = C ′µ.

In other words, the minimal implementation cost of a

pattern generated by a unifilar information transducer is
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the pattern’s statistical complexity. The transient dis-

sipation that occurs when generating a structured pat-

tern, given in Eq. (5), is then the output’s crypticity

χ+ = C ′µ−E′ [41], as Ref. [42] concluded previously and

Ref. [33] more recently.

Now, consider the more general case in which we al-

low the transducer implementation to be nonunifilar; see

Fig. 1 again. From the Data Processing Inequality [44],

it follows that the mutual information between X0 and←−
Y ′ cannot be less than the output’s excess entropy:

I[X0;
←−
Y ′] ≥ E′ . (7)

Thus, the minimum structural cost over alternate

pattern-generator implementations is the output pat-

tern’s excess entropy.

Figure 1 suggests how to find this minimum. The im-

plementation cost highlighted by the dashed (red) line

can be minimized by choosing a transducer whose states

are strictly functions of the future. In this case, the trans-

ducer’s mutual information with the output past is sim-

ply E′, achieving the bound on implementation cost given

by Eq. (7). (Refer now to Fig. 2.) Constructed using

states that are functions of the future, such a ratchet is

a generator with retrodictive (as opposed to predictive)

states, denoted R−0 or S−0 [45]. This means that the gen-

erator is counifilar, as opposed to unifilar [46, 47]. These

generators have the same states as the unifilar generators

of the time-reversed process, but generally are nonunifi-

lar. These retrodictive generators produce the same out-

put process by running along the information reservoir

in the same way as the predictive generators, but rather

than store all of the information in the past outputs re-

quired to predict the future, they only store just enough

to generate it. This affords them a fundamental energetic

advantage.

Critically, too, any such retrodictive implementation

is maximally efficient, dissipating zero transient heat

〈Qtran〉min = 0, even though the state uncertainty varies

across implementations: H[R−0 ] > H[S−0 ]. Unlike unifilar

transducers, for a given output process there are infinitely

many counifilar information transducers of varying state-

complexity that are all maximally thermodynamically ef-

ficient. In other words, simpler is not necessarily ther-

modynamically better for optimized transducers, as we

demonstrate using the example of the (3, 2) Golden Mean

Process in the Supplementary Materials. Figure S1 there

demonstrates the distinct thermodynamic advantages of

retrodictive representations. This shows, as a practical

matter, that both the design and evolution of efficient bi-

ological computations have a wide latitude when it comes

to physical instantiations.

To summarize, we identified the transient and struc-

tural thermodynamic costs of physical information trans-

duction, generalizing the recent Information Process Sec-

ond Law. These bound the energetic costs incurred by

any physically embedded adaptive system as it comes to

synchronize with the states of a structured environment.

Physical organization in the environment is a thermal re-

source for adaptive biological agents. To take advantage

of that resource, however, the agent’s internal state must

reflect the hidden structure of its input [17, 24, 33]. Sim-

ilarly, when producing an organized output, the agent

must transition among the recurrent hidden states that

are capable of generating the desired structure. Informa-

tion transducing agents such as these involve a transient

phase during which additional costs are incurred due to

the agent adapting to its asymptotic behavior. When

asking about which physical implementations are the

most thermodynamically efficient we showed that they

can be bounded by the information shared by the agent,

output past, and input future. This led us to see that

the most efficient generators of organization are retro-

dictive, not necessarily ε-machines which are generative

but predictive.

Supplementary Materials: Derivations, further dis-

cussion and interpretation, and an explicit comparison

of the thermodynamics of generators and predictors for

an example system.
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