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The generalization of matrix product states (MPS) to continuous systems, as proposed in the
breakthrough paper [F. Verstraete, J.I. Cirac, Phys. Rev. Lett. 104, 190405(2010)], provides a
powerful variational ansatz for the ground state of strongly interacting quantum field theories in one
spatial dimension. A continuous MPS (cMPS) approximation to the ground state can be obtained by
simulating an Euclidean time evolution. In this Letter we propose a cMPS optimization algorithm
based instead on energy minimization by gradient methods, and demonstrate its performance by
applying it to the Lieb Liniger model (an integrable model of an interacting bosonic field) directly
in the thermodynamic limit. We observe a very significant computational speed-up, of more than
two orders of magnitude, with respect to simulating an Euclidean time evolution. As a result,
much larger cMPS bond dimension D can be reached (e.g. D = 256 with moderate computational
resources) thus helping unlock the full potential of the cMPS representation for ground state studies.

Over the last 25 years, progress in our understanding
of quantum spin chains and other strongly interacting
quantum many-body systems in one spatial dimension
has been dominated by a variational ansatz: the matrix
product state (MPS) [1–4]. The wave function |Ψ〉 of
a quantum spin chain made of N spin-1/2 degrees of
freedom depends on 2N complex parameters Ψi1···iN ,

|Ψ〉 =

1∑
i1=0

1∑
i2=0

· · ·
1∑

iN=0

Ψi1i2···iN |i1i2 · · · iN 〉 . (1)

Accordingly, an exact numerical simulation has a compu-
tational cost that grows exponentially with the size N of
the chain. In an MPS, the 2N coefficients are expressed in
terms of the trace of a product of matrices. For instance,
in a translation invariant system the MPS reads

Ψi1i2···iN = tr
[
Ai1Ai2 · · ·AiN

]
, (2)

where A0 and A1 are D×D complex matrices. Thus, the
state |Ψ〉 of N spins is specified by just O(D2) variational
parameters, allowing for the study of arbitrarily large,
even infinite, systems [5, 6].

A generic state of the spin chain can not be expressed
as an MPS, because the bond dimension D limits how
entangled |Ψ〉 can be. However, ground states of local
Hamiltonians happen to be weakly entangled (e.g. they
obey an entanglement area law [7, 8]) in a way that al-
lows for an accurate approximation by an MPS. Given
a Hamiltonian H, White’s revolutionary density matrix
renormalization group (DMRG) [2, 9] algorithm provided
the first systematic way of obtaining a ground state MPS
approximation by minimizing the energy, see also [9].
Subsequently, Refs. [10, 11] proposed an algorithm to
simulate time evolution with an MPS, which in Euclidean
time also produces a ground state approximation, see also
Refs. [12–14]. An improved formulation of the time evo-
lution simulation by MPS was obtained in terms of the
time-dependent variational principle (TDVP) [15].

The continuous version of an MPS (cMPS), introduced
by Verstraete and Cirac [16, 17], has the potential of
duplicating, in the context of quantum field theories in
the continuum, the enormous success of the MPS on the
lattice. A cMPS expresses the wave function |Ψ〉 of a
quantum field on a circle of radius L as a path ordered
exponential Pe of the fields that define the theory. For a
bosonic, translation invariant system it reads

|Ψ〉 = tr
[
Pe

∫ L
0
dxQ⊗1+R⊗ψ†(x)

]
|Ω〉 , (3)

where ψ†(x) is the bosonic field creation operator,

[ψ(x), ψ(y)] = 0,
[
ψ(x), ψ(y)†

]
= δ(x− y), (4)

|Ω〉 is the empty state, i.e. ψ(x) |Ω〉 = 0, and Q and R are
D ×D complex matrices. Again, the wave function |Ψ〉
is parameterized by just O(D2) parameters. A cMPS ap-
proximation to the ground state of a continuum Hamilto-
nian H can then be obtained by simulating an Euclidean
time evolution with TDVP adapted to cMPS [15]. While
this algorithm and its variations work reasonably well for
small D up to D ∼ 50 [18–21], their performance is poor
compared to lattice MPS techniques.

In this Letter we propose an energy minimization al-
gorithm to find a cMPS approximation for ground states,
based on gradient descent techniques, and demonstrate
its performance with the Lieb Liniger model in the ther-
modynamic limit (L → ∞). We also propose a useful
cMPS initialization scheme, of interest on its own, based
on lattice MPS algorithms. These proposals result in
a very significant computational speed-up with respect
to Euclidean time evolution – e.g. converging a cMPS
with bond dimension D = 256 requires less time than a
D = 64 computation with TDVP. For simplicity we con-
sider a single bosonic field. Generalization to a fermionic
field and to multiple fields is straightforward.
Continuum limit and central canonical form.— In or-

der to describe the algorithm, we must first adjust the
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notation in two ways. Firstly, following [16], we discretize
the interval [0, L) in Eq.(3) into a regular lattice made of
N ≡ L/ε sites and with inter-site spacing ε, and produce
an MPS with matrices A0 and A1 [22] given, in vectorized
form, by (

A0

A1

)
=

(
1 + εQ√

εR

)
, (5)

such that the original cMPS is recovered in the limit
ε → 0 [16]. Here, A0 and A1 corresponds to having 0
or 1 particle at the lattice site. This lattice visualization
is useful in order to manipulate the cMPS with regular
MPS techniques, provided the latter have a well-defined
continuum limit (ε → 0). Secondly, we use the lattice
visualization to re-express the cMPS of an infinite sys-
tem (L → ∞) in the central canonical form [23], Eq.(7)
below. For this purpose, we consider the Schmidt decom-
position of |Ψ〉 according to a left/right partition of the
resulting infinite lattice [24],

|Ψ〉 =

D∑
α=1

λα |Ψl,α〉 |Ψr,α〉 , λ1 ≥ · · · ≥ λD > 0, (6)

and denote by λ a diagonal matrix with the D Schmidt
coefficients {λ1, · · · , λD} in its diagonal. In the central
canonical form, the MPS |Ψ〉 is expressed as the infinite
product of (vectorized) matrices

|Ψ〉 ∼ · · ·λ−1
(
A0
c

A1
c

)
λ−1

(
A0
c

A1
c

)
λ−1

(
A0
c

A1
c

)
λ−1· · · .

(7)
The matrices A0

c and A1
c are chosen such that(

A0

A1

)
≡
(
A0
c

A1
c

)
λ−1 and

(
B0

B1

)
≡ λ−1

(
A0
c

A1
c

)
(8)

are in the left and right canonical form [3], namely(
A0
)†
A0 +

(
A1
)†
A1 = 1, (9)

B0(B0)† +B1(B1)† = 1. (10)

From Eqs.(7)-(8) the standard MPS form Eq.(2) (in the
L→∞ limit) for e.g. a left normalized MPS is recovered,

|Ψ〉 ∼ · · ·
(
A0

A1

)(
A0

A1

)(
A0

A1

)
· · · . (11)

In the central canonical form, familiar to DMRG and
MPS practitioners working with so-called single-site up-
dates, a change in the matrices A0

c and A1
c on a single site

produces an equivalent change in |Ψ〉, in the sense that
the scalar product in the lattice Hilbert space and in the
effective one-site Hilbert space are equivalent (they are
related by an isometry). This is important when apply-
ing gradient methods, because two gradients, calculated
in two different gauges of the same state, are in general

not related by a gauge transformation and are not equiv-
alent. The importance of the central gauge has been
realized early on in DMRG [2] and also time evolution
methods [6, 11, 23, 25–27].

Finally, in the continuum limit, the central canonical
form is given by (c.f. Eqs.(5) and (8))(

A0
c

A1
c

)
=

(
λ+ εQc√

εRc

)
. (12)

Gradient descent.— Given a quantum field Hamilto-
nian H, see e.g. Eq.(15), our goal is to iteratively opti-
mize the cMPS in such a way that the energy

E(λ,Qc, Rc) ≡
〈Ψ|H |Ψ〉
〈Ψ|Ψ〉

(13)

is minimized. Each iteration updates a triplet

(λ[n], Q
[n]
c , R

[n]
c ) and is made of two steps. (i) First, keep-

ing λ fixed, we update Qc and Rc in the direction of
steepest descent given by the gradient, namely Q̃[n]

R̃[n]

 =

 Q
[n]
c

R
[n]
c

− αn
 ∂E/∂Q∗c

∂E/∂R∗c

 , (14)

where αn > 0 is some adjustable parameter and ∗ denotes
complex conjugation. Crucially, the gradients ∂E/∂Q∗c
and ∂E/∂R∗c can be efficiently computed using stan-
dard cMPS contraction techniques. We dynamically
choose the largest possible factor αn by requiring con-
sistency with some simple stability conditions (alterna-
tively, αn can be determined by a line search). (ii) Then,

from (λ[n], Q̃[n], R̃[n]) we obtain (λ[n+1], Q
[n+1]
c , R

[n+1]
c )

by bringing the cMPS representation back into the cen-
tral canonical form. This completes an iteration, which
has a cost comparable to one time step in TDVP. We em-
phasize that all manipulations are implemented directly
in the continuum limit i.e. ε is treated as an analytic
parameter throughout the optimization, and the ε → 0
limit can be taken exactly due to exact cancellation of all
divergencies.

Overall, the proposed energy minimization algorithm
proceeds as follows (see [28] for technical details).
(a) Initialization: An initial triplet of matrices

(λ[0], Q
[0]
c , R

[0]
c ) is obtained, either from a random initial-

ization or, as in this Letter, through Eq.(12) from an
MPS optimized on the lattice.

(b) Iteration: The above update (λ[n], Q
[n]
c , R

[n]
c ) 7→

(λ[n+1], Q
[n+1]
c , R

[n+1]
c ) is iteratively applied until attain-

ing a suitably converged triplet (λ,Qc, Rc).
(c) Final output: A standard cMPS representation as

in Eq.(3) is recovered by transforming the result into
(Q,R). For instance, (Q,R) = (Qcλ

−1, Rcλ
−1) as in

Eq.(8) for a final cMPS in the left canonical form (see
also [28]).
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As usual in such optimization methods, convergence
can be accelerated by replacing the gradient descent in
Eq.(14) with e.g. a non-linear conjugate gradient update,
which re-uses the gradient computed in previous steps
(see [28, 29]).

Example.— To benchmark the above algorithm, we
have applied it to obtain a cMPS approximation to the
ground state of the Lieb Liniger model [30, 31],

H =

∫
dx
( 1

2m
∂xψ

†(x)∂xψ(x) + µψ†(x)ψ(x)

+ g ψ†(x)ψ†(x)ψ(x)ψ(x)
)
, (15)

which is both of theoretical and of experimental interest
and has been realized in several cold atom experiments
[32–37]. This integrable Hamiltonian has a critical, gap-
less ground state that can be described by Luttinger liq-
uid theory [35] and can be exactly solved by Bethe ansatz
[30, 31, 38–41].

Fig. 1 (a) (blue dots) illustrates the fast and robust
convergence of the cMPS with the number of iterations of
steepest descent, by showing the energy density E ≡ 〈H〉,
particle density ρ ≡ 〈ψ†ψ〉, and reduced energy density
e,

e ≡ E − µρ
ρ3

= 〈∂xψ
†∂xψ

2m
+ gψ†ψ†ψψ〉 / 〈ψ†ψ〉3 , (16)

for bond dimension D = 16 and the choice of parame-
ters (µ, g,m) = (−0.5, 1.0, 0.5). For comparison, we also
show the same quantities when the cMPS is optimized
instead by an Euclidean time evolution using the TDVP
algorithm (green crosses), starting from the same initial
state and using values dτ = α = 0.01 for TDVP and
for the steepest descent optimization [28], respectively.
These values for dτ are typically used in common TDVP
calculations for cMPS [42]. Fig. 1 (b) then shows the
convergence of the energy e to the exact value eBethe ob-
tained from the Bethe ansatz solution [43] as a function of
iteration number, again for a steepest descent (blue dots)
and TDVP (green crosses) optimization. In this exam-
ple, energy minimization converges towards the ground
state roughly a hundred times faster than TDVP. The
difference in performance is even bigger for larger bond
dimension D, and/or when no lattice optimization is used
to initialize the cMPS, in which case TDVP may even fail
to converge.

Fig. 2(a) illustrates the performance of the proposed
energy minimization algorithm as a function of the bond
dimension D. For D = 16, 32, 64, 128, we computed the
reduced energy density e(γ) for several values of the di-
mensionless interaction strength γ ≡ g/ρ in the range
[0.04, 80] and observed a uniform pattern of convergence
towards the exact eBethe(γ). For reference, a D = 64
optimization employing a non-linear conjugate gradient
optimization [28] (stopped once the energy E has con-

FIG. 1: Convergence of gradient optimization and of TDVP,
forD = 16 and (µ, g,m) = (−0.5, 1.0, 0.5). We used dτ = 0.01
as time step for TDVP and α = 0.01 for the steepest descent
optimization [28]. The time per iteration for either method is
0.2s. (a) Energy density E (main figure) and particle density
ρ (inset) as a function of iteration number. (b) Convergence
of reduced energy density e towards the exact value eBethe as
a function of iteration number [43].

verged to 9 digits) takes ∼6 minutes on a desktop com-
puter [44], including both the lattice initialization (∼2
minutes) and the non-linear conjugate gradient optimiza-
tion in the continuum (∼4 minutes). This value of the
bond dimension is the largest reported so far using TDVP
[19, 45].

Fig. 2(b)-(c) specializes to γ ∼ 2.3, e ∼ 1.2, and
considers even larger values of the bond dimensions D,
up to 256, to reproduce well-understood finite-D ef-
fects of the cMPS representation [45–48]. Fig. 2(b)
shows the relative error ∆e in the reduced energy density
and the entanglement entropy S ≡ −

∑
α(λα)2 log2(λα)2

across a left/right bipartition, Eq.(6). As expected, ∆e
vanishes with D as a power-law, ∆e ∼ Dp1 , whereas
the entanglement entropy diverges logarithmically, S ∼
logD. Fig. 2(c) shows the superfluid correlation func-
tion 〈ψ†(x)ψ(0)〉 /ρ, which is seen to saturate to a fi-
nite value | 〈ψ〉 |2/ρ at some distance ξ, another well-
understood artefact of the (c)MPS representation at fi-
nite bond dimension D [45–48]. This artificial finite cor-
relation length ξ is seen to diverge with growing D as a
power-law, ξ ∼ Dp2 .

Once we have established that the optimized cMPS is
an accurate approximation to the ground state, we can
move to exploring other properties of the model. Fig. 3
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FIG. 2: (a) Reduced energy density e as a function of the di-
mensionless interaction strength γ ≡ g/ρ and cMPS bond
dimensions D. The solid line is the exact result from a
Bethe ansatz calculation. Data points for different D are
on top of each other. The inset shows the error ∆e ≡
(e − eBethe)/eBethe. (b) Relative error ∆e in the reduced
energy density (filled circles) and bipartite entanglement S
(empty squares) of a left/right bipartition, as a function of the
bond dimension. (c) Superfluid correlation function, showing
saturation to a constant at a finite correlation length ξ, which
diverges with growing D.

FIG. 3: (a) Superfluid correlation function and (b) pair
correlations as a function of the interaction strength γ, for
µ = −0.5, D = 128.

shows the superfluid correlation function 〈ψ†(x)ψ(0)〉 /ρ
and pair correlation function 〈n(x)n(0)〉 /ρ2, respectively,
for D = 128 and different values of the dimensionless in-
teraction strength γ. With growing γ we observe an in-
creasingly rapid decay in the superfluid correlation func-
tion. The pair correlation function develops typical os-
cillations that are related to the fermionic nature of the
ground state of the Tonks-Girardeau gas [49] at g =∞.

We can also estimate both the central charge c and the
Luttinger parameter K, which can be used to uniquely
identify the conformal field theory that characterizes the
universal low energy / large distance features of the
model. The central charge c can be estimated from the

slope of S(D) (see Ref. [45]). For γ ≈ 2.3 we obtain a
value of c ≈ 0.997, to be compared with the exact value
c = 1. The Luttinger parameter K [35, 50] is obtained
from fitting log(〈ψ†(x)ψ(0)〉 /ρ) vs log(x) [20], where we
choose x to lie in the region where 〈ψ†(x)ψ(0)〉 /ρ ex-
hibits power-law decay. For D = 256 and γ ≈ 2.3 we
obtain K = 2.362 ± 0.002. A value of K = 2.378 was
obtained in [50] from the weak-coupling approximation
of the Bethe ansatz solution. The relative difference to
our result is ∼ 0.7%.

Discussion.— The cMPS is a powerful variational
ansatz for strongly interacting quantum field theories in
1+1 dimensions [16]. In this Letter we have proposed
a cMPS energy minimization algorithm with much bet-
ter performance, in terms of convergence and the attain-
able bond dimension D, than previous optimization algo-
rithms based on simulating an Euclidean time evolution.
For benchmarking purposes, we have applied it to the ex-
actly solvable Lieb Liniger model, but it performs equally
well for a large variety of (non-exactly solvable) field the-
ories [28]. We envisage that this algorithm will play a
decisive role in unlocking the full potential of the cMPS
representation for ground state studies in the continuum.

Our algorithm works best by initializing the cMPS
through an energy optimization on the lattice and by
translating the resulting MPS from the lattice to the
continuum through Eq.(5). A natural question is then
whether the continuum algorithm is needed at all. That
is, perhaps –one may wonder– an MPS algorithm work-
ing at finite lattice spacing ε can already provide a cMPS
representation (through Eq.(5)) that can be made arbi-
trarily close to the one obtained with the continuum al-
gorithm by decreasing ε sufficiently. The answer is that
this is not possible: lattice algorithms necessarily become
unstable as the lattice spacing ε is reduced. This can be
understood from a simple scaling argument. In discretiz-
ing e.g. Hamiltonian H of Eq.(15) into a lattice, the non-
relativistic kinetic term

∫
∂xψ

†∂xψ is seen to diverge with
ε as ∼ 1/ε2, while the rest of terms in the Hamiltonian
have a milder scaling. For small ε this creates a large
range of energy scales that lead to numerical instability.
This effect is compounded with a second fact, revealed
by Eq.(5). For small ε the MPS matrix A0 = 1 + εQ is
made of two pieces: a constant part 1 made of 0’s and
1’s and the variational parameters εQ, which are of order
ε. Thus the first part 1 shadows the second one, in that
the numerical precision on the variational parameters Q
is reduced by a factor ε when embedded in matrix A0.
The observant reader may then wonder if these problems
could be prevented by just changing variables, to work
instead with Q = (A0 − 1)/ε. This is indeed the case,
and also the essence of working with the cMPS repre-
sentation directly, as we do in the proposed energy min-
imization algorithm. Notice that lattice MPS techniques
can be succesfully applied to ground states [51–55] and
real time evolution [56, 57] of discretized field theories.
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However, these simulations are conducted at sufficiently
large ε and are often plagued with finite ε-scaling analy-
sis, which is not necessary when working directly with a
cMPS.

We have seen that the cMPS energy minimization al-
gorithm drastically outperforms TDVP at the task of
approximating the ground state (we emphasize that the
TDVP remains an extremely useful tool e.g. to simulate
real time evolution, for which no other method exists).
This result did not come as a surprise: on the lattice,
MPS energy minimization algorithms, including DMRG,
have long been observed to converge to the ground state
much faster than time evolution simulation algorithms
[5]. We expect the new algorithm to also produce a sig-
nificant speedup both for inhomogeneous Hamiltonians
(where matricesQ(x) and R(x) depend on space [16, 58]),
or for a theory of multiple fields ψα(x) [18, 60–64]), as
we will discuss in future work.
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