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We address band engineering in the presence of periodic driving by numerically shaking a lattice
containing a bosonic condensate. By not restricting to simplified bandstructure models we are able to
address arbitrary values of the shaking frequency, amplitude and interaction strengths, g. For “near
resonant” shaking frequencies with moderate g, a quantum phase transition to a finite momentum
superfluid is obtained with Kibble-Zurek scaling and quantitative agreement with experiment. We
use this successful calibration as a platform to support a more general investigation of the interplay
between (one particle) Floquet theory and the effects associated with arbitrary g. Band crossings
lead to superfluid destabilization but where this occurs depends on g in a complicated fashion.

Periodic shaking of optical lattices has become an im-
portant tool for controlling and manipulating cold atom
systems [1]. Shaking experiments have elucidated [2–4]
quantum critical phenomena, introduced novel [5, 6] and
topological [7–9] bandstructures, and addressed Kibble-
Zurek (KZ) scaling [10–12]. Just as for the analogous
solid state systems [13–15] the understanding of these
periodically driven systems is generally based on single
particle dynamics within Floquet band theory [16]. This
allows the observation of dynamics in a stroboscopic but
effectively time independent fashion. However, to cre-
ate the novel phases suggested by the Floquet band pic-
ture turns out to be complicated [17]. Interaction effects
as well as heating and dissipation arising from periodic
perturbations can adversely affect this band engineering
[1, 18–21].

We address these important issues in this paper us-
ing a microscopic model to directly simulate unidirec-
tional shaking of Bose condensates. We consider a spe-
cific (“near-resonant”) frequency range [2] and vary the
interaction strengths, g. For g comparable to experiment
[3], as was observed, we find a quantum phase transi-
tion at fixed shaking amplitude s = sc to a finite mo-
mentum superfluid state. This is associated with mul-
tiple domains having momentum ±q∗. Importantly, we
find quantitative agreement with these shaking experi-
ments [3]. Armed with this support, in the more general
parameter regime, we investigate heating effects. We find
that Floquet band crossings are points of potential super-
fluid destabilization. Notably, we show where precisely
this occurs is dependent on g in a very interesting way.

The quantum phase transition at sc is addressed here
and in experiment [3] using a continuous linear increase in
the shaking amplitude: s(t) = ṡt, for t > 0 and constant
ṡ. We consider a shaking frequency slightly higher than
the bandgap associated with the two lowest Bloch bands
in the (static) optical lattice. At sc, in Floquet theory

the single particle dispersion Efloq(k) transitions from
having a minimum at k = 0 to a double well structure
with minima at k = ±q∗. This is illustrated in Fig. 1(a).

The number and arrangement of these k = ±q∗ do-
mains is connected to KZ theory [10–12] in a quan-
titative way. A scaling theory, which correlates the
ramp velocity ṡ to the distribution of topological defects
(here, domain walls) was originally argued to be appli-
cable to non-driven systems. Surprising, then is the fact
that experimental observations [3] and, importantly, the
present theory, show that equilibrium KZ physics seems
to largely survive periodic driving. Also surprising is a
second puzzle which we also address here. A driven sys-
tem contains an infinitely dense set of non-adiabaticity
points [22], which are potentially insurmountable and
associated with Floquet band-crossings. While it is ar-
gued [22] for one body systems that these can be avoided
with faster ramps, in this paper we show how many body
interactions can accomplish the same thing.

There is an extensive literature on the effects of shaking
of optical lattices and KZ scaling involving Bose-Einstein
condensates [5, 23–30]. Also notable are many Reviews
[1, 22, 31, 32] and related studies of condensate quenches
[33, 34]. Accompanying this is a rather widespread the-
oretical literature in which condensate shaking is ad-
dressed via Bose-Hubbard models in one [20, 35, 36] or
two [27] band tight-binding approximations.

In this paper we study the effects of periodic driv-
ing and many-body interactions by direct simulation of
the shaken lattice. This is in contrast to previous the-
oretical approaches, which implement shaking on model
bandstructures, and is also distinct from a periodic mod-
ulation of the lattice amplitude [37]. The dynamical
bandstructure emerges naturally, through simulation of
the (two dimensional) Gross-Pitaevskii equation (GPE).
Change In this way, except for adopting the mean field
GPE, our numerical scheme is general [38]. Because we
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FIG. 1. Dynamics of the phase transition in a shaken optical lattice. (a) Variation in the Floquet dispersion with shaking
amplitude s. At low shaking amplitudes the dispersion has a single minimum; at shaking amplitudes s > sc exceeding the
critical shaking amplitude sc, two minima appear at ±q∗. (b) Bifurcation of condensate momentum-space density, nk(s) for
quench rates ṡ = v3 (top) and v6 (bottom) where vn = v02n. (c) The second moment of the momentum space dispersion for a
range of ramp rates ṡ = vn, with n = 0 . . . 8. (d) The shaking amplitude at the peak (circles) scales as a power-law with the
quench rate sp ∝ ṡa as expected from KZ theory. A fit to this equation (solid curve) yields a ≈ 0.6.

are not restricted to gentle shaking perturbations, we are
able to address arbitrary shaking frequency, amplitude,
and strength of interactions. As expected, with increas-
ing amplitude and frequency progressively more Floquet
bands (than just one or two) become relevant. As the
interaction strength, g, is varied, we identify the insta-
bilities which occur and which are found to be associated
with one particle Floquet band crossings.

In this paper we address an unexplored puzzle posed by
recent experiments [3]: why Kibble-Zurek theory works
so remarkably well. This is all the more intriguing be-
cause the phase transition occurs in a periodically driven
system. Using our simulations we attribute this to two
main effects. The first is that the topological defects
which are created are anomalously slow to heal. This
appears to be due to their quasi-one dimensional nature.
Indeed, earlier work [39, 40] has demonstrated that the
healing time for 1D defects exponentially increases with
the system size. The second effect has to do with un-
derstanding the criteria for superfluid breakdown due to
“heating” associated with shaking. We probe this nu-
merically by varying the interaction strength g and im-
portantly find that choosing g to coincide with its ex-
perimental value evidently leads to an optimally stable
superfluid phase.

Theoretical Approach.– We study a two-dimensional
Bose condensate in a shaken optical lattice through a
full microscopic simulation [38] of the Gross-Pitaevskii
Equation.

i~∂tψ (r, t) = eiγ
(
−~2∇2/2m− µ+ VL (x− φ (t))

+ g |ψ (r, t)|2
)
ψ (r, t) . (1)

where ψ (r, t) is the condensate wavefunction at time t
and position r = (x, y), ∇ is the gradient operator, and
m is the mass of a single atom. The chemical potential µ
includes zero point lattice energy ε0. Here we rescale ψ at
t = 0 so that

∫
|ψ (r, 0) |4dr/

∫
|ψ (r, 0) |2dr = 1, and de-

fine the interaction constant g = µ− ε0 corresponding to

an intrinsic mean-field interaction energy. We consider a
homogeneous system with periodic boundary conditions
which avoids complexities associated with trapping po-
tentials. Unless indicated otherwise, we find little signif-
icant changes [38] when we include trap effects.

The one-dimensional lattice potential VL (x) =
U0 sin2 (kLx) has a depth U0, lattice constant λ = π/kL,
and lattice recoil energy EL = ~2k2

L/2m. We choose vari-
able interaction constant in terms of the experimental
value gexpt ≈ 0.18EL. Shaking is implemented through
the time-dependent shift φ (t) = s(t)/2 sinωt of the lat-
tice from its equilibrium value at t = 0. We closely
match experimental parameters [3] with U0 = 8.86EL,
ω = 6.04EL. We chose logarithmically spaced ramp
rates of the form ṡ = v02n, with n = 0 . . . 8 and v0 =
0.98 × scω/(2

850π); the range n = 1 . . . 6 then closely
matches the range of experimental ramp rates [3] rele-
vant for Figs. 2(c,d). Change Our GPE approach with
a small phenomenological dissipation parameter γ > 0
has been applied with some success in somewhat differ-
ent contexts [38, 41–44]. This is distinct from dissipa-
tion schemes [38, 45] appropriate for non-driven systems.
Here we use a GPE solver based on a split-step algorithm,
implemented on graphic processing units [38].

To characterize the momentum bifurcation associated
with the onset of the finite-momentum condensate, we
introduce the longitudinal momentum-space condensate
density nk (t) =

∫
dky/(2π)|ψ(k, t)|2, where ψ(k, t) is

the momentum-space wavefunction and and we denote
kx by k. From here, we can define the second mo-
ment of the momentum-space density in the first Bril-
louin zone(BZ), σ2

k(t) =
∫

1BZ
k2nk(t)/

∫
1BZ

nk(t), where
1BZ is the interval [−kL, kL] for kL = π/λ. To quan-
tify the spatial characteristics of the domain structure
on length scales comparable to the lattice spacing, λ,
we compute the site-averaged current-current correla-
tion function G0(x) = G(x)/G(0), where G (xm) =∑
n

∫
j (xm + xn, y) j (xn, y) dy and G(0) = j̄2 is the
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FIG. 2. Comparison of spatial structure between theory and experiment. (a) Domain structure via a snapshot of the
local current density at s = sp for a range of quench rates as labelled. (b) Plots of correlation functions G0(xm) before
rescaling the distance. (c) Scaling of the typical domain size d (solid circles) and the correlation length ξ (open circles) at the
shaking amplitude sp in the numerical simulations. Both length scales follow a power law scaling: d, ξ ∝ ṡ−b with b ∼ 0.26.
Experimental results for d (solid squares) and ξ (open squares) are shown for comparison [3]. (d) In scaled spatial coordinates
x/d, the correlation functions for every quench rate collapse onto a single curve (solid lines), consistent with the experimental
result (squares) [3].

mean-squared current.

Numerical results and analysis of GPE dynamics.– We
begin by presenting results of our numerical simulation
for the momentum-space condensate density nk(s), as
shown in Fig. 1(b), at two different ramp rates; we hence-
forth express time in units of shaking amplitude through
s(t) = ṡt. For both ramp rates the condensate density
is peaked at zero momentum until some time after the
expected critical shaking amplitude (defined below and
marked by the vertical line) is passed. Beyond this crit-
ical amplitude, the condensate bifurcates reflecting the
transition in the single particle Floquet dispersion. Our
numerical calculations lead to results very similar to the
observations in Refs. [3]. To quantify the physics in more
detail, in Fig. 1(c), we present calculations of σ2

k(s) for
a range of ramp rates. All curves reach an equilibrium
value of σ2

k(s) which lies on a curve consistent with an

expected dependence σ2
k ∝ (q∗)

2 ∝ s− sc.
Two key features appear as the ramp rate increases:

(1) For faster ramps there is a delay in the bifurcation
onset, relative to the critical point. (2) Additionally, we
observe an overshoot (and sometimes a subsequent un-
dershoot) in the curves before they settle down to the

equilibrium value of (q∗)
2
. This overshoot [46] or “ring-

ing” effect is more apparent the faster the ramp. By
studying time correlation plots from one site to another
we establish that the overshoot stems from a collective
oscillation of the entire condensate (and domain walls),
with adjacent domains moving out of phase.

As can be seen, the most easily quantified feature of
Fig. 1(c) is the amplitude, denoted sp, of the first over-
shoot peak. We use this peak to characterize the tempo-
ral scaling of the bifurcation onset. It should be noted

that in this one regard our analysis is different from ex-
periment [3], as we (and experiments) find the overshoot
essentially disappears for a trapped gas. In Fig. 1(d),
we plot the shaking amplitude associated with the peak
versus the ramp rate on a log-log plot. The clear linear
dependence of this relation suggests a power law scaling,
with a corresponding exponent of a ≈ 0.6. This can be
compared with the experimental exponent of a ≈ 0.5 [3].
In this way, as in somewhat different contexts [25, 26, 47]
our numerical simulations produce a KZ scaling over a
large range of ramp rates.

Establishing an effective time scale variable then en-
ables an analysis of position space scaling. Here we are
able to quantitatively compare with experiment, as trap-
ping effects appear less significant. Figure 2(a) shows
sample domain configurations near a shaking amplitude
sp, for a range of ramp rates [48]. A form of self-similarity
in the curves is evident with the fine domain structure
shown on the right (corresponding to the most rapid
ramps) and the coarser domain structure on the left
(slowest ramps). This appears qualitatively consistent
with the KZ picture.

For a more quantitative analysis we study the spa-
tial correlation function G0(xm) at sp defined above,
as shown in Fig. 2(b). The Fourier transform of this
quantity has a characteristic peak kpeak and full-width-
half-maximum, wk, from which we define length scales
d ≡ π/kpeak and ξ ≡ π/wk. These length scales are
functions of ṡ and are presented in Fig. 2(c) which shows
a range of ramp rates; both scale as d, ξ ∝ ṡ−b with
b ∼ 0.26. This yields quantitative agreement with exper-
iment (shown as squares) [3]. Finally, Fig. 2(d) presents
the same correlation functions in Fig. 2(b), but with the
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position coordinate expressed in terms of a scaled dis-
tance d(ṡ). All correlation functions lie along a uni-
versal form [49–51]. Importantly, this universal curve
appears quantitatively consistent with the experimental
data (shown as squares) [3].
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FIG. 3. Effect of interactions on Floquet evolution. Pan-
els (a), (b), and (c), show the evolution of the conden-
sate density in momentum-space for interaction strengths
g/gexpt = 0.1, 1, 10, respectively, for the quench rate ṡ = v0.
For the weakest interactions shown in panel (a), we mark the
shaking amplitudes s1 and s3, where domains are destabilized,
s2 where domains are re-instated, and s4 where the conden-
sate is transferred to a single q∗ superfluid without domains.
(d) The lowest six Bloch bands of the unshaken lattice sys-
tem, with arrows indicating resonant transitions. Each arrow
has a length equal to the shaking frequency. (e) The wave-
function component of the lowest state determined from the
full Floquet bandstructure calculated with fixed s = 2.4sc.
The colored arrows indicate the Floquet transitions that are
relevant at amplitudes si. (f) Domain configurations for a
quench with g/gexpt = 0.1 taken between the marked shaking
amplitudes. For reference, in units of the conventional energy
scale [1, 38], K ≡ mω2λ(2s), takes the value near s = sc,
K/~ω ≈ 0.76.

Instabilities associated with variable interaction
strength.– When the interaction strength assumes the
experimental value, g = gexpt, the numerical results
presented above show a consistency with experiments.
We now explore the effects of variable g/gexpt ranging
from 0.1, 1, and 10, as shown in Figs. 3(a), 3(b), and
3(c) respectively. We plot the momentum space conden-
sate density nk(s) as a function of shaking amplitude,
showing regions where the superfluid is destabilized. For
definiteness, we take a ramp rate ṡ = v0, about a factor
of two slower than explored in experiment [3]. A dark
(light), localized coloration in (a) represents a region of
stable (unstable) domain formation as reflected in the
current-current correlations.

Even though we vary the interaction by 2 orders of
magnitude, Fig. 3 indicates that we can identify charac-
teristic times (or equivalently shaking amplitudes) s1 and
s3 which are evident in Fig. 3(a) and also appear either in

3(b) or 3(c). These features are points at which either the
domains disappear altogether or abruptly become inco-
herent. One might thus expect that these robust points
are intrinsic to the underlying (single particle) Floquet
bandstructure and represent band-crossings as points of
non-adiabaticity [22].

To address this, in Fig. 3(d) we present the six low-
est Bloch bands of the unshaken, non-interacting system
[38]. The counterpart plot in 3(e) represents the compo-
nent cn of the “ground-state” of the full Floquet Hamil-
tonain when expressed in the Bloch basis [38]. The un-
shaken bands in (d) are coupled in Floquet theory when
the energy difference coincides with n~ω [22, 52]. The
figure shows resonant transitions from the first band are
possible to the fourth, fifth, or sixth bands (correspond-
ing to s4, s1, and s3 respectively). These same three
multi-photon transitions as in (d) can be identified in
the Floquet calculation of (e) by a larger component of
higher Bloch bands. Note that in the complete calcu-
lation, the resonance momenta shift slightly with s from
the bare resonances in (d) [52]. What is important about
this figure is that many bands are apparent, with six, six,
and five bands entering in (a),(b) and (c), respectively.
Only near the bifurcation point are two bands adequate
for understanding the dynamics. Note also that Fig. 3(a)
shows that domains are initially formed for a very short
time, after which they are lost at s1 and subsequently
reformed at s2. A small increase by a factor of three in
g will reinstate domains in this intermediate region.

To summarize the key physics of (a)-(c): at weak g
(and sufficiently slow ramps) one needs a small contribu-
tion from inter-boson interactions to surpass the s1 level
crossing barrier (see Figs. 3(a) and 3(b)). The presence
of the very weakest magnitude interactions presumably
is required for equilibration and appears to be necessary
in order to form domains at all. This role of small g con-
trasts with the scenario in Ref. [19]. Increasing g further
from Fig. 3(b) to 3(c) ultimately introduces a more tur-
bulent behavior and undermines stability. Taking even
larger g, the bifurcation disappears altogether in a rather
abrupt fashion. Interestingly the optimal case, where the
instabilities are maximally suppressed is for the interac-
tion parameter g/gexpt = 1.

For completeness in Fig. 3(f) we present sample do-
main configurations between each of the characteristic
amplitudes si above, for g/gexpt = 0.1. When the do-
mains first appear after sc, they are rather stripe like.
After s1, the system then loses coherent domains un-
til they reform at s2, but with a new correlation length
along both axes. We find s2 is not related to the Floquet
resonances, but rather appears to reflect dissipation, and
is highly sensitive to g. At larger s coherence is again lost
at s3. Finally, after the transition at s4, the condensate
momentum appears at the zone edge q∗ = ±kL; this sta-
ble superfluid has a unique momentum component and,
thus, contains no domains.
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Conclusions.– In this paper we numerically addressed
periodically driven systems by directly shaking (near res-
onance) a Bose superfluid lattice. This should be com-
pared to one or two band Hubbard model approxima-
tions [20, 27, 35, 36] which introduce a priori simpli-
fications. Our findings in Fig. 3 show, for a range of
interaction strengths both large and small, that many
bands tend to participate. The novel superfluid which
results exhibits two types of finite- momentum domains
and has features in common with a disordered form of
the Larkin-Ovchinnikov-Fulde-Ferrell [53] fermionic su-
perfluid phase.

Having these domains is particularly useful because
their distribution provides a marker for visualizing dis-
tinct superfluid phases (see Fig. 3(e) and movies [48]).
Moreover, the number and arrangement of domain walls
is found to be quantitatively associated with KZ pre-
dictions for topological defects seen in experiment [2, 3]
and in our simulations. As a highlight of this paper, we
note that calibrating our numerics by first successfully
addressing experiment made it possible to explore more
confidently the important question of when and how the
Floquet bands (of a non-interacting system) are evident
in the presence of arbitrary many body interactions.
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