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We formulate and study a spin-orbital model for a family of cubic double perovskites with d*
ions occupying a frustrated fcc sublattice. A variational approach and a complimentary analytical
analysis reveal a rich variety of phases emerging from the interplay of Hund’s and spin-orbit cou-
plings (SOC). The phase digram includes non-collinear ordered states, with or without net moment,
and, remarkably, a large window of a non-magnetic disordered spin-orbit dimer phase. The present
theory uncovers the physical origin of the unusual amorphous valence bond state experimentally sug-
gested for Bap BMoOs (B=Y,Lu), and predicts possible ordered patterns in Bap BOsOg (B=Na,Li)

compounds.

PACS numbers: 75.10.Jm, 75.30.Et

Conventionally, frustration, low dimensionality and
low spin are the key attributes of emerging novel quan-
tum ground states. In the quest to realize a quantum spin
liquid, a state of spins possessing massive quantum entan-
glement and lacking magnetic order, researchers have ex-
tensively studied Mott insulators with antiferromagnetic
(AF) interactions on geometrically frustrated triangular,
kagome, hyper-kagome and pyrochlore lattices [1, 2]. An-
other route to frustration in Mott insulators with un-
quenched angular momentum is provided by orbital de-
grees of freedom. The directional character of degenerate
d-orbitals may frustrate the magnetic interactions even
on bipartite lattices, and lead to a plethora of emergent
phases with unusual spin patterns [3, 4] or without long-
range spin/orbital order [5-10].

In 4d and 5d transition metal compounds, the en-
hanced SOC, compared to 3d systems, fully or partly
lifts the local degeneracy of a d-shell. When degener-
acy is fully lifted, e.g. in case of a single hole in a tg4-
shell, the anisotropic orbital interactions as well as re-
lated frustration are transferred to pseudo-spin one-half
Kramers doublets of d® ions [4, 11, 12]. However, in
case of only partially lifting the degeneracy, the direc-
tional character of the electron density of the degenerate
states is preserved, resulting in an effective reduction of
magnetic sublattice dimensionality and strongly ampli-
fying the effects of geometrical frustration. The Mott
insulating d' double perovskites with undistorted cubic
structure, such as spin-1/2 BagBMoOg (B=Y,Lu) and
Bay BOsOg (B=Na,Li), in which the only magnetically
active ions, Mo®T or Os”*, reside on a weakly frustrated
fce sublattice well exemplify this physical scenario [13].

The osmium compounds BasNaOsOg and BasLiOsOg
order magnetically [14-16]. Small effective local moments
~0.7 up, compared to spin only value 1.7 up, have been
extracted from high temperature susceptibilities in both

materials [14]. The strong reduction of local moments is
a direct manifestation of unquenched orbital momentum
and strong SOC in the 5d-shell of Os™ ion [17-19]. In
BasNaOsOg, anomalously small net ordered moment ~
0.2up has additionally been detected [15, 16]. Recent
NMR measurements indicate a canted AF order in the
Na compound [20].

The reported experimental data on BasYMoOg are
even more puzzling: this compound does not show any
structural or magnetic transition down to 50 mK [21-
23]. The total high temperature entropy extracted from
electronic heat capacity was reported to be close to
Rln4 [22], indicating the presence of an extra two-fold
orbital degeneracy in addition to the spin, and allow-
ing for the emergence of multi-orbital physics. Based
on magnetic susceptibility and muon spin rotation data,
a valence bond glass state, an amorphous arrangement
of spin singlets, has been proposed for BasYMoOg [22]
which remains quite stable against isovalent substitutions
of Ba?T with Sr?* [24]. The magnetic susceptibility of a
very similar compound BasLuMoOg also did not exhibit
any magnetic transition down to 2 K [25]. Theoretically,
various exotic phases, including multipolar order [13] and
chiral spin-orbital liquid [26], have been put forward as
possible candidates.

In this letter, we introduce and study a spin-orbital
model and show that a dimer-singlet phase, composed of
random arrangement of spin-orbit dimers, without any
type of long-range order is a natural ground state of the
model. The physical properties of this disordered phase
are consistent with all available experimental findings on
molybdenum double perovskites. In addition, the mini-
mal model supports complex non-collinear, coplanar, or-
dered patterns. We argue that such four-sublattice or-
dered states are realised in osmium compounds.

Local electronic structure— The single d-electron of



a Mo®t or Os™" ion in a cubic environment occupies
tag-manifold of degenerate xy, xz, yz orbitals. It carries
an effective angular momentum [ = 1 with |[*=0) =|zy),
[l#==+1) E—%(’L|ZZ> + |yz)) [27]. The six-fold degener-
acy of the local Hilbert space is lifted by the local SOC
Hy = “A-S stabilizing j = [+ S = % quartet and push-
ing j = % Kramers doublet to a higher energy. Here, S
is an electron spin operator and A denotes the SOC. The
states j* = :I:% of j = % manifold have predominantly
xy character, while j* = :I:% components are given by
superposition of xz and yz orbitals only [see Fig. 1(a)].
When SOC is much smaller (larger) than the exchange
interactions between neigbhoring ions, it is more conve-
nient to use the ta, (j = %) basis. The following analysis
covers both limits.

Spin-orbital Hamiltonian.— In the double perovskite
structure, each nearest-neighbor bond of the fcc sub-
lattice of magnetic ions belongs to one of the crystal-
lographic planes zy, 2z, or yz as shown in Fig. 1(b). We
label these bonds as well as the t94-orbitals with a cubic
axis y(= a, b, ¢) normal to their planes, e.g. xy becomes
c. The hopping between neighboring t24-orbitals takes
place through intermediate oxygens’ p-orbitals, or direct
hybridization. Along a y-type bond the dominant over-
lap, with amplitude ¢, is between ~-orbitals [13, 28]. The
low-energy spin-orbital model is obtained via standard
second order perturbation theory in ¢/U (U being the
local Coulomb repulsion) [29], and reads as follows:

= Z[ Ji(S: - 5 + )+J2(§i-§j_%)}pigv>

)\Zl S . (1)

(ij), denotes a vy-type bond, Jy = %Jrl(g), Js =
2J(2ry +1r3), J = 4t*/U, the set of 7, describing the
multiplet structure of excited states are functions of
n=Ju/U <1 [30], and Jy is the Hund’s coupling.

The isotropic spin exchange couplings depend on the
orbital occupancy of the corresponding bonds [3, 31], and
are described by the first three terms of Eq. (1), with the
orbital projectors P(j) =n{"01 ny)) +(1— nEV))ny)
and Pi(]) = nEW)n§7), where n('Y) is the occupation num-
ber of a y-orbital. The spin isotropy is broken by the SOC
in Eq. (1), allowing symmetric anisotropic exchange be-
tween j = % quartets. In cubic double perovskites, the
antisymmetric Dzyaloshinsky-Moriya exchange is forbid-
den by the bond inversion symmetry.

Dimer-singlet phase— We start our analysis by set-
ting the small parameter n = 0, and discuss later the
model (1) in its full parameter space. We consider two
limiting cases when A < J or A > J, and identify the
ground state phases of the model (1) through analyti-
cal considerations. At n = 0, first three terms of the
model (1) can be grouped, up to a constant term, into
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FIG. 1. (a) Density profile of j = 3/2 quartet. The states
jz = :I: (bottom) have dominant zy-orbital character, while

= :I:— components (top) are composed of xz and yz or-
bltals Red and blue coloring denotes the up and down spin
distribution, respectively. (b) Crystallographic unit cell con-
taining four molybdenum ions (large circles). Oxygen po-
sitions are indicated by small circles. The nearest-neighbor
bonds belonging to different cubic planes are distinguished
by different colors. The ta4-orbitals active along the corre-
sponding bonds are also indicated.

one [31], and the model simpliﬁes to

H=J> (S PW) /\ZZS (2)

(i5)

The expectation value of the first term in Eq. (2) in any
classical, i.e. site-factorized, state is non-negative. At
A = 0, the zero minimum classical energy is achieved
by forming decoupled layers of AF square lattices with
uniform planar orbital order. In this state, the orbital

projectors P(V) = 1(0) on intra-(inter-)layer bonds and

(S; - 5; ;) = —1 on intra-layer bonds. Hence, orbital ‘fla-
vors’ are decoupled and flipping locally an orbital 'flavor’
does not cost energy, resulting in a massive ground state
degeneracy [31]. A product state constructed from en-
tangled quantum spin-orbit states on decoupled dimer
bonds has however lower negative energy, Eps = —%J .
This phase, termed here as dimer-singlet phase, corre-
sponds to a hard-core dimer covering of the fcc lattice,
with ]51-27) = 1(0) on (inter-)dimer bonds. On a dimer
bond, spins form a singlet and occupied orbitals have
lobes directed along the bond. Covering the lattice with
such dimers is in fact an exact eigenstate of the Hamil-
tonian (2). When neighboring dimers are in the same
plane, an energetically unfavorable larger clusters of AF
coupled spins are formed [32], and such configurations are
banned from the ground state manifold. Although, this
seems to be a rather strong constraint, the orientational
degeneracy of dimer covering remains extensive [31].
For A > J, the ty4-levels are split and the components
of the lower j = 3/2 quartet forms the relevant basis, that
we label by pseudo-spin § and pseudo-orbital 7 states:
|T lv s* _> :

= |j_27] _i%> and |Tz:_§7s
>E| 3 JF=%3) 3

3]. Projecting Eq. (2) onto this
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FIG. 2. Types of different inter-dimer bonds depicted as
dashed lines. Dimers are represented with O O and are col-
ored according to three cubic planes they belong to. Bonds
b:1 and bz couple dimers with perpendicular to these bonds.
Bond b3 connects a dimer from a orthogonal plane with an-
other one that is in the same plane as bs itself.

new basis, we find

H=T3 (55+ ) BS (3)

)

where PZ.(].'Y) = (3 —i—Ti(’Y))(% +T;7)), J = 3J, 7@ =
—%Tz—éﬁ”, 7(®) = —%Tz—i—@ﬂ, and 7(9) = 7%, Hamil-
tonian (3) has the same form as the Kugel-Khomskii
model of eg-orbitals on a cubic lattice [3] and explicitly
reveals the emergent, at large A, hidden SU(2) symmetry
pointed out in Ref. 13. Similarly to A = 0, the ground
state manifold of (3) is spanned by dimer-singlets, but
now these are composed of pseudo-spins instead of real
spins.

Insight for intermediate A can be gained by exactly
solving the model (1) on an isolated bond, since the inter-
dimer couplings appear to be much smaller than intra-
dimer ones (see below). For each values of A, we find the
singlet ground state

jom0) = (1) — |44 )/ V2, (4)

where the wave-functions of pseudo-spins 1} ({}) depend
on the strength of A [31], e.g., in the zy-plane, we have

[t (1)) = cos? 0,1 (1)) +sind (=)L, 4 (1)) - (5)
In the two limiting cases, A = 0 and A > 1, the vari-

ational parameter # becomes 0 and arccos \/g , respec-

tively. The SOC inflates the planar orbital, so that at
large A it becomes ’ J :%7 jzzzt%>. The latter has small
out-of-plane component, see Fig. 1(a), generating fi-
nite but small interactions between, otherwise decoupled,
dimers. However, as it follows, inter-dimer couplings do
not select any particular superstructure of dimers.

Fig. 2 shows all possible inter-dimer bonds allowed in
the ground state manifold. Such a bond may connect
two dimers both perpendicular the connecting bond it-
self: then, either the connected dimers belong to different
planes (by) or to the same plane (bp). The third possibil-
ity, bs, is that one of the dimers is in the same plane as
the inter-dimer bond, and the other is perpendicular to
them [see Fig. 2]. Consequently, regardless of the dimer
arrangements, each dimer has exactly six neighboring b3

bonds. Out of 6/ bonds of the fcc lattice with N sites,
there are in total 3\ dimer bonds, 3\ bs-type, and re-
maining 3N by or by type of bonds. Each dimer (by-type)
bonds host a finite energy & (€b,). As both by and b
bonds connect dimers out of their plane, &, = &, and
the energy of a product dimer state

Eps = (Ed + 58, + 65b3)/\//2 (6)

is independent of the dimer covering. Hence, the inter-
dimer couplings do not order dimers and the massive ori-
entational degeneracy persists. In real materials, how-
ever, a mis-site disorder and/or uncorrelated local dis-
tortions most likely select a random dimer covering, ren-
dering the system to freeze in a glassy manner.

In an amorphous dimer-singlet phase, momenta of the
excitations are not well defined, but their energies are.
Moreover, the inter-dimer couplings are much smaller
than the intra-dimer exchange, allowing isolated dimer
description of the bulk magnetic spectra. At n, A = 0,
as product dimer states are exact eigenstates, spins of
different dimers are completely decoupled. In the large A
limit, the inter-dimer pseudo-spin exchange J' ~ %ﬁj <
J. This estimate follows from Eq. (3) by noting that
<PZ-(J7)> = % on the inter-dimer bonds. Two types of local
excitations allowed by magnetic dipole transitions are il-
lustrated in Fig. 3. The upper one corresponds to flipping
locally a (pseudo-)spin at the energy cost Ag = .J (J) in
small (large) A limit. The lower is a (pseudo-)orbital ex-
citation that costs half the energy, Ao = £.J (%j), of a
spin-like excitation. These estimates follow from the ex-
pectation values of the limiting Hamiltonians Eqgs.(2,3)
in the ground state of an isolated bond, Fig. 3(left), and
its excited states, Fig. 3(right). Using reported parame-
ters for BaaYMoOg [29], we estimate energy of spin-like
(orbital-like) excitations Ag(oy ~ 20 — 45 (10 —23) meV,
for large—small SOC, and their bandwidth (~ J') of
about few meV. In the magnetic dipolar channel, spin-
like excitations carry stronger intensity than orbital-like
ones. These findings agree well with neutron scattering
data on powder samples discussed below.

There are additional thermally accessible non-local ex-
citations at lower energies. For example AF coupled spin
clusters, or orphan spins may emerge as a result of ther-
mally induced orbital reorientation. An important differ-
ence between the well studied spin-only dimer systems
and our model is the lack of a hard-gap. Here, on ac-
count of orbital degrees of freedom, the spectrum cannot
be characterized by a single energy scale.

Phase diagram.— To explore the entire phase diagram
of the full Hamiltonian (1), we used a site-factorized vari-
ational approach and compared the energies of ordered
and dimer-singlet phases. The latter is numerically ob-
tained from Eq. (6) using a product state of the exact
wave-functions of isolated dimers. Within our variational
approach, the magnetic and crystallographic unit cells
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FIG. 3. Excitations of a spin-orbit dimer in the large A limit.
Flipping locally, for example, the j* = —1/2 component to
j* =1/2 or to 5 = —3/2 corresponds to flipping the pseudo-
spin (top) or pseudo-orbital (bottom), respectively. Local ex-

citations for small SOC correspond to changing the real spins
or orbitals.

oo | G

coincide, however, we still need forty variational param-
eters to construct a trial wave-function [31]. When n =0
the ground state is a random arrangement of spin-orbit
dimers [see inset in Fig. 4] for any value of . Ounly the na-
ture of pseudo-spins forming the singlet dimers is affected
by A, in accordance with the above analytical consider-
ations. For large enough Hund’s coupling, we find two
non-collinear but coplanar phases of ordered total angu-
lar momenta j [see Fig. 4]. One, termed here as coplanar-
F, has finite net moment along [110] (or equivalent) direc-
tion, i.e. along one of the NN bond, as experimentally ob-
served [14]. The other, coplanar-AF, has no net moment.
In the dimer-singlet phase, on a dimer bond in -plane
corresponding ~y-orbital is predominately occupied, with
occupancy decreasing from n(?) =1 to % with increasing
A. Hunds coupling induced transitions to ordered states
are accompanied by complex rearrangements of an elec-
tron density within SOC split to,-multiplet, with orbital
occupancies dictated by the actual values of parameters,
e.g. in coplanar-AF order in a cubic y-plane the a- and
(-orbitals are predominantly occupied compared to the
in-plane ~-orbital. All phase boundaries appear to be
first order within our approach: the net moment and the
order parameters drop to zero across the transitions from
coplanar-F to coplanar-AF state and from the ordered to
disordered dimer-singlet phase, respectively. However,
one cannot rule out a second order symmetry allowed
transition between ordered states, or an exotic contin-
uous transition from spontaneously dimerized phase to
ordered states [34].

Experimental implications.— The dimer-singlet phase
captures experimental observations on the molybdenum
compounds. In agreement with experiments, it does not
exhibit any long-range ordering nor breaks any global
symmetry. Its extensive degeneracy explains the ob-
served glassy behavior and suggest the presence of a
residual entropy, that cannot be excluded based on heat
capacity data [22]. Magnetic susceptibility and elec-
tronic heat capacity [22, 23] suggest the presence of
pseudo-gapped, rather than hard-gapped, low-energy ex-
citations, consistent with the dimer-singlet phase. Neu-

0.2
Coplanar-F
s 01 Coplanar-AF
Dimer-singlet
0 Il Il Il
0 1 2 3 4
A

FIG. 4. Phase diagram of the model (1) as the function of
Hund’s coupling 7 and the SOC A (in units of J). For small
values of 7 the dimer-singlet phase (see inset) is stable over
the entire range of \. With increasing Hund’s coupling, non-
collinear coplanar phases with ordered moments in one of the
cubic planes are stabilized. The ferro-type coplanar state,
coplanar-F, has a finite net moment pointing along [110] (or
equivalent) direction. The cartoon figures show a tetrahedron
of four molybdenum sites projected onto the plane of ordered
j—moments7 depicted as arrows.

tron scattering experiments on powder samples [35] re-
vealed excitations that are in line with the spectrum of
weakly coupled spin-orbit dimers. An intense 'mode’
observed at Ag ~ 28 meV with bandwidth of about
4 meV is interpreted here as a (pseudo-)spin singlet-to-
triplet excitation. A less intense, lower-energy (Ap =~
9 — 17 meV) response centred around at half the en-
ergy of Ag is naturally attributed to (pseudo-)orbital ex-
citation. These lower-lying excitations have also been
observed in NMR response [21]. The energetics of the
observed excitations agrees well with above estimates
Agoy =~ 20 — 45 (10 — 23) meV. In addition, the in-
frared transmission spectra indicate the emergence of
uncorrelated local distortions of MoQOg octahedra below
130 K [36], at around the same temperature the magnetic
susceptibility start to decrease, most likely due to for-
mation of spin-orbit dimers. In the dimer-singlet phase,
such uncorrelated distortions emerge due to the direc-
tional character of the occupied orbitals.

The four-sublattice ordered states in the phase
diagram (Fig. 4) may provide description for the
iso-structural osmium compounds, BasLiOsOg and
BasNaOsOg. The latter is characterized by very small
net magnetic moment ~0.2up along [110] easy axis [14].
We find the net moment M = 25 — falong the same
[110] (or equivalent) direction, being ~ lup for small
and ~ 0.1up for large \.

To summarize, within a minimal microscopic model,
we have proposed unified theoretical description of pos-
sible ground states in d' cubic double perovskites. The



obtained spin-orbital model shows a rich phase behav-
ior including a massively degenerate dimer-singlet man-
ifold, without any long-range order, and unusual non-
collinear ordered patterns. Our theoretical study eluci-
dates physics behind and provides explanations of exper-
imental data on molybdenum and osmium based com-
pounds. The physics discussed here may also be rele-
vant to other heavy transition metal compounds, such as
molybdenum pyrochlores, in which random distribution
of ‘dimerized’ bonds, induced by orbital degrees, have
been recently revealed by pair-distribution function mea-
surements [37].
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