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In this work, we study the transport through a quantum point contact for bosonic helical liquid
that exists at the edge of a bilayer graphene under a strong magnetic field. We identify “smoking
gun” transport signatures to distinguish bosonic symmetry protected topological (BSPT) state from
fermionic two-channel quantum spin Hall (QSH) state in this system. In particular, a novel charge
insulator/spin conductor phase is found for BSPT state, while either charge insulator/spin insulator
or charge conductor/spin conductor phase is expected for the two-channel QSH state. Consequently,
a simple transport measurement will reveal the fingerprint of bosonic topological physics in bilayer
graphene systems.
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Introduction - Ever since the discovery of topological
insulators (TIs) [1–4], intensive research has been focused
on understanding the role of symmetry in protecting new
topological states, which are known as “symmetry pro-
tected topological (SPT) states”[5, 6]. A grand challenge
in this field is to understand the role of interaction in SPT
states and to realize interacting SPT states in realistic
materials. Recently, it was theoretically proposed that
interaction has a dramatic effect on topological proper-
ties of bilayer graphene under a tilted magnetic field [7].
The strong magnetic field guarantees the spin conser-
vation, and drives the system into a quantum spin Hall
(QSH) state with edge states described by fermionic two-
channel helical Luttinger liquid. Experimentally [8], the

two-terminal conductance is found to approach 4e2

h when
chemical potential is tuned into the Zeeman gap between
two spin-polarized zeroth Landau levels, which serves as
the key signature of helical edge transport in the QSH
physics [9–14]. In Ref. [7], we analyze the interaction ef-
fect in bilayer graphene and demonstrate that fermionic
degrees of freedom on the boundary are generally gapped
out. A pair of bosonic edge modes, however, remains gap-
less as a result of the symmetry protection of charge con-
servation (U(1)c symmetry) and spin conservation (U(1)s
symmetry). Thus, interactions drive the whole system
from a two-channel QSH state into a bosonic version of
topological insulators, known as bosonic SPT (BSPT)
state [5, 6, 15–17]. Since a pair of dual boson fields of
this bosonic edge mode carry charge-2e excitation and
spin-1 excitation, respectively, and preserve the helical
nature, we dub them “bosonic helical liquid”. Therefore,
bilayer graphene under a strong magnetic field provides
us a unique opportunity to study interacting topological
physics in realistic materials[18, 19].

The aim of this work is to explore transport proper-
ties of bosonic helical liquid of BSPT state in bilayer
graphene and identify key signatures to distinguish BSPT
state from fermionic QSH state. First of all, the bosonic
charge-2e edge excitation of BSPT state carries electric

currents and a two-terminal measurement will also reveal
4e2

h conductance, taking into account two edges in a real-
istic sample. Thus, the two-terminal transport measure-
ments [8] cannot distinguish the BSPT state from QSH
state in bilayer graphene. Several possible experimen-
tal probes, such as shot noise measurement of 2e-charge,
have been considered in Ref. 7. However, such noise mea-
surement is experimentally challenging and sometimes
controversial, and a simple transport detection of BSPT
state is desirable.
In this work, we study a quantum point contact (QPC)

between two edges of bilayer graphene under a tilted mag-
netic field, as shown in Fig. 1. With the help of this QPC
setup, fingerprints of BSPT state are clearly revealed in
the phase diagram of inter-edge tunneling physics. Based
on realistic interaction in bilayer graphene, our main re-
sults show (1) a novel charge insulator/spin conductor
phase [20, 21], labelled as IC phase[22], when BSPT
state is formed, and (2) in contrast, either charge con-
ductor/spin conductor or charge insulator/spin insulator
phase, labelled as CC/II phase, for the fermionic two-
channel QSH state, where BSPT state is not formed.
Thanks to the unique transport properties in IC phase,
we propose simple two-terminal conductance measure-
ments in both vertical and horizontal directions in the bi-
layer graphene QPC. Perfect insulating behaviors in both
directions will be the “smoking gun” signal for BSPT
physics, unambiguously distinguishing BSPT state from
fermionic QSH state.
Model Hamiltonian - We consider a bilayer graphene

sample in a four-terminal configuration as shown in Fig.
1. Both in-plane magnetic field (B‖) and out-of-plane
magnetic field (B⊥) are required to drive the system into
the QSH regime with two-channel helical Luttinger liquid
on the boundary [8, 23]. A strong asymmetric potential
(VA) induced by a gate voltage can drive the system into a
layer polarized insulating phase with a trivial gap [24–26].
As a result, we can locally gate the sample and nontrivial
edge modes exist at the interface between unbiased region
(blue region) and biased region (orange region), as shown
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in Fig. 1. The local gates can be designed to form a QPC
configuration in this device and the tunneling between
two edges only occurs at the QPC.
As justified in the supplementary materials [27], heli-

cal edge modes can exist in both edges and are labeled
by the fermionic operators ψi,l,λ that are connected to
the lead i ∈ {1, 2, 3, 4} and characterized by a channel
index l ∈ {I, II} and a direction index λ ∈ {in, out}.
Abelian bosonization technique is applied and the corre-
sponding bosonic chiral fields χi,l,λ are defined as ψi,l,λ =
Fi,l,λ√
2πa0

eif(λ)
√
4πχi,l,λ , with the Klein factor Fi,l,λ, the co-

efficient f(λ) = +1(−1) for a right (left) mover and the
short-distance cut-off a0. Let us define the edge that con-
nects the leads 1 (3) and 2 (4) as the top (bottom) edge
and the bosonic chiral fields on each edge are related to
the χi,l,λ field by

χt(b),l,R = χ1(4),l,out(−x)Θ(−x)− χ2(3),l,in(x)Θ(x)

χt(b),l,L = χ1(4),l,in(−x)Θ(−x) − χ2(3),l,out(x)Θ(x),(1)

with step function Θ(x). Here the +x direction is defined
along the edge from lead 1 (4) to lead 2 (3). The dual
boson fields are introduced as φt(b),l = χt(b),l,R +χt(b),l,L

and θt(b),l = −χt(b),l,R + χt(b),l,L. Together with the un-
harmonic terms that respect both U(1)c and U(1)s sym-
metries, the full Hamiltonian is given by

H =
∑

s∈{t,b}

∑

l=±

vl
2
[Kl(∂xφs,l)

2 +
1

Kl
(∂xθs,l)

2]

+g1
∑

s

cos 2
√
2πφs,− + g2

∑

s

cos 2
√
2πθs,− (2)

where φs,± = 1√
2
(φs,I±φs,II) and θs,± = 1√

2
(θs,I±θs,II)

are bonding and anti-bonding fields, respectively. When
g1 = g2 = 0, this Hamiltonian describes the low-energy
edge physics of QSH state with a spin Chern number

2. Here K± =
√

2πvf+2g5+g3±g4
2πvf+2g5−g3∓g4

, and it is expected

that K− > 1. An explicit definition of g3 and g4 can
be found in the supplementary materials [27]. A non-
zero g1 term is relevant, which will freeze the φs,− field

as φs,− = (2ns+1)π

2
√
2π

with ns ∈ Z, and gap out the

anti-bonding boson modes. The pinning of φs,− field is
dubbed BSPT condition, which mathematically dis-
tinguishes bosonic helical liquid from two-channel helical
Luttinger liquid. We further introduce the notation of
spin-charge basis as

φρ = φ+,+, φσ = θ−,+, θρ = θ+,+, θσ = φ−,+. (3)

with φs=±,+ = (φt,+ ± φb,+)/
√
2 and θs=±,+ = (θt,+ ±

θb,+)/
√
2. The corresponding Hamiltonian is

HBSPT =
∑

r=ρ,σ

v+
2
[K+(∂xφr)

2 +
1

K+
(∂xθr)

2], (4)

Therefore, the remaining free bosonic bonding fields φs,+
and θs,+ form helical bosonic edge modes carrying spin-1
and charge-2e.

FIG. 1. QPC setup of a bilayer graphene sample is plotted,
where a tilted magnetic field is applied. The BSPT regime is
colored in blue, while symmetric potential VS and asymmet-
ric potential VA are applied to the yellow and orange regime.
Here VS locally shifts the chemical potential to drive the yel-
low parts of the sample to be metallic, which thus act as leads.

Tunneling physics and Phase diagram - For QPC struc-
ture, tunneling process is expected to take place at the
contact point x = 0. Inter-edge tunnelings for a QSH
state are only constrained by the symmetries of the sys-
tem. In a BSPT QPC setup, however, tunneling terms
are additionally constrained by the BSPT condition de-
fined above. We will show that this requirement not only
constrains the explicit form of tunneling process, but also
modifies the scaling dimension of tunneling operators and
greatly changes the phase diagram of tunneling process.
Let us start with the single-particle tunneling, and

U(1)s symmetry requires that an electron must switch
its velocity when hopping between different edges. Gen-
erally, the single-particle tunneling operator is

Tl,l′ = tl,l′ψ
†
t,l,Lψb,l′,R + h.c. (5)

In the bosonized language, Tl,l′ = tl,l′ cos
√
π[φ+,+ +

θ−,+ − f+(φ+,− + θ−,−)− f−(φ−,− + θ+,−)], where f± =
1
2 [(−1)l ± (−1)l

′

]. BSPT condition guarantees that the
correlation function of its dual fields 〈θs,−(τ)θs,−(0)〉 di-
verges as g1 → ∞ [27]. As a result, the correlation
function of any vertex operator of θs,− vanishes since

〈eiαθs,−(τ)e−iαθs,−(0))〉 = e−
α2

2
〈[(θs,−(τ)−θs,−(0))2]〉. This

immediately implies that any vertex operator of θs,− is
vanishing under RG operation. Since θs,− always ap-
pears in Tl,l′ , we conclude that single particle tunneling
Tl,l′ is generally forbidden in the BSPT QPC. Physically,
this implies that single-particle tunneling is incompati-
ble with the BSPT condition, and violates the bosonic
nature of BSPT state.
Next, we examine the two-particle tunneling shown in

Fig. 2 (a), where a right mover on the top edge (spin-up)
tunnels to a left mover on the bottom edge (spin-up), and
a right mover on the bottom edge (spin-down) simulta-
neously tunnels to a left mover on the top edge (spin-
down). As a result, the charge transfer between the top
and bottom edges is zero, while the spin transfer is one.
This type of spin-1 tunneling process is mathematically



3

(a) (b)
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FIG. 2. Two-particle tunneling processes of spin-1 tunneling
and charge-2e tunneling are plotted: (i) (a) and (b) in the
fermion limit; (ii) (c) and (d) in the BSPT limit.

described by

V σ = vσl1,l2,l3,l4ψ
†
b,L,l1

ψt,R,l2ψ
†
t,L,l3

ψb,R,l4 + h.c., (6)

where l1,2,3,4 ∈ I, II. Under BSPT condition, the ab-
sence of anti-bonding field θs,− in V σ yields a strong con-
straint on the channel index li: l1 = l4 = l, l2 = l3 = l′,
which leads to

V σ = vσ cos 2
√
πφ+,+ = vσ cos 2

√
πφρ. (7)

There exists another type of symmetry allowed two-
particle tunneling term, which describes inter-edge trans-
fer of 2e charge and zero spin, as shown in Fig. 2 (b):

V ρ = vρl1,l2,l3,l4ψ
†
b,L,l1

ψt,R,l2ψ
†
b,R,l4

ψt,L,l3 + h.c. (8)

The condition for a non-vanishing V ρ can be similarly
identified as l1 6= l4, l2 6= l3, leading to the following
bosonized expression of charge-2e tunneling as

V ρ = vρ cos 2
√
πθ−,+ = vρ cos 2

√
πφσ . (9)

As shown in Ref. [7], the elementary bosonic exci-
tations on the edge s are found to be either charge-
2e spin-singlet Cooper pair Φs,q=2e = ψs,I,Rψs,II,L −
ψs,I,Lψs,II,R ∼ e−i

√
2πθs,+ or spin-1 chargeless spinon

Φs,σ=1 = ψ†
s,I,↓ψs,I,↑ − ψ†

s,II,↓ψs,II,↑ ∼ e−i(−1)s
√
2πφs,+ .

For the definition of bosonic operator Φs,σ=1, we have
used the convention (−1)t = −1 and (−1)b = 1, which
originates from opposite spin-momentum locking at dif-
ferent edges. The above two-particle tunneling terms can
be rewritten as,

V σ = vσΦ†
b,σ=1Φt,σ=1 + h.c.

V ρ = vρΦ†
b,q=2eΦt,q=2e + h.c. (10)

Therefore, two-particle tunneling Vσ and Vρ are phys-
ically interpreted as the tunneling of bosonic quasi-
particles across the QPC, as shown in Fig. 2 (c) and
(d). In other words, Eq. (10) demonstrates the minimal
tunneling events allowed in a bosonic SPT system.

Now we are ready to analyze and compare the phase
diagram of tunneling physics for bilayer graphene QPC
structure with and without the formation of BSPT state.
In a series of pioneering works, the QPC physics of
fermionic 1-channel helical Luttinger liquid and fermionic
4-channel helical Luttinger liquid have been studied in
a QSH system [20, 21, 28] and a bilayer graphene with
domain walls [29]. The phase diagram of our bilayer
graphene QSH state follows the paradigm in the above
systems: (1) In the weak interaction limit, both single-
particle and two-particle tunneling terms are small and
irrelevant, which defines CC phase. However, a dual-
ity transformation of CC phase reveals another stable
fixed point where the QPC is pinched off, giving rise to
the so-called II phase [21]. Therefore, CC and II fixed
points are separated by a QPC pinch-off transition in this
parameter regime. (2) As the repulsive (attractive) in-
teraction strengths exceed critical values, QPC is driven
into the IC (CI or charge conductor/spin insulator) phase
where spin-1 (charge-2e) tunneling is relevant. We have
mapped out the phase diagram of fermionic two-channel
QSH state in QPC setup of bilayer graphene, as shown
in Fig. 3 (a). More details can be found in the supple-
mentary materials [27].
When bulk BSPT state is formed, however, BSPT con-

dition freezes the anti-bonding degree of freedom and
removes the role of K− in the phase diagram. Scaling
dimensions of two-particle tunneling terms are further
modified to ∆(vσ) = 1

K+
and ∆(vσ) = K+, in compari-

son to the QSH case [27]. This change of scaling dimen-
sions leads to different RG equations

dvσ

da
= (1 − 1

K+
)vσ,

dvρ

da
= (1 −K+)v

ρ, (11)

with real space scaling factor a for vσ,ρ. For K+ > 1, we
find vσ is relevant while vρ is irrelevant, leading to the IC
phase. In contrast, the CI phase appears for K+ < 1 and
is separated from the IC phase by a critical point atK+ =
1, as shown in Fig. 3 (b). Comparing Fig. 3 (a) and
(b), we find two phase diagrams are completely different
in the weak interaction limit K+ ≈ 1, thus providing
a route to distinguish BSPT state and fermionic two-
channel QSH state in bilayer graphene.
Experimental detection - Based on the phase diagram

(Fig. 3 (a) and (b)), we next turn to realistic bilayer
graphene systems. First, we need to give an estimate
of the Luttinger parameters K±, which can be extracted
from the screened Coulomb interaction between two edge
state electrons. As discussed in the supplementary ma-
terials [27], after mapping the screened Coulomb inter-
action into the four-fermion interactions in Luttinger liq-
uids, we find that K+ is determined by the ratio be-
tween interaction strength and kinetic energy of the edge
modes, while K− is related to the difference between
intra- and inter-Landau level interactions. Assuming the
out-of-plane magnetic field to be 2 Tesla and a substrate
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FIG. 3. Phase diagram of the QPC physics is plotted for: (i)
two-channel QSH state in (a); (ii) BSPT state in (b). Voltage
configurations of the proposed two-terminal measurement are
shown in (c) and (d). Temperature dependence of GXX (red
line) and GY Y (green line) are also plotted for QSH state in
(e) and BSPT state in (f).

dielectric constant ǫ = 5, we find that K+ = 1.43 and
K− = 1.02 [30] in our bilayer graphene system, which is
depicted by the red square in both Fig. 3 (a) and (b).
Based on this estimate, we conclude that the formation
of BSPT state drives the QPC system in bilayer grahene
from CC/II phase into IC phase. In other words, probing
IC phase in the QPC can serve as the transport evidence
of the BSPT state in bilayer graphene.

In the following, we demonstrate that a simple trans-
port measurement will unambiguously distinguish IC
phase from CC/II phase. We consider to apply either
horizontal (VX = V1 −V2 −V3 +V4) or vertical bias volt-
ages (VY = V1 + V2 − V3 − V4). The simplest voltage
configurations are shown in Fig. 3 (c) and (d), which are
effectively two-terminal setups in two orthogonal direc-
tions. A horizontal current IX = I1 − I2 − I3 + I4 and a
vertical current IY = I1 + I2 − I3 − I4 can be measured
to extract conductances along both directions, where Ii
(Vi) is the lead current (voltage) for lead i ∈ {1, 2, 3, 4}.
The current operators above are related to the boson

current operators as IX = Iρ and IY + Iσ = 4e2

h VY .
These relations can be easily verified with the help of
Eq. (1), together with the definition of spin/charge cur-
rent Iρ/σ = − 2√

π
∂tφρ/σ . For the CC phase of QSH state,

both single-particle tunneling and two-particle tunneling
terms are irrelevant, so φρ and φσ are free boson fields
whose currents are accompanied by a quantized conduc-

tance. This gives rise to IX = 4e2

h VX while IY = 0.
From the duality relation between CC and II phases, we

immediately find that IY = 4e2

h VY and IX = 0 for II
phase. Therefore, a QSH sample is always found to be a
perfect conductor along either horizontal or vertical di-

rection, while a perfect insulator along the corresponding
orthogonal direction. On the other hand, for a BSPT sys-
tem, the IC phase exhibits relevant spin-1 tunneling pro-
cess V σ, which gaps out only φρ field. As a consequence,
both IX and IY are vanishing and the current flows in the
leads are constrained by I1 = −I2 = I3 = −I4 [20, 21].
Thus, the BSPT QPC setup shows the perfect insulating
behaviors in both horizontal and vertical directions ! This
simple and feasible transport measurement will be the
smoking gun evidence of BSPT state.

The distinction between QSH state and BSPT state
is further demonstrated when temperature effects are in-
corporated. Temperature dependence of horizontal con-
ductance GXX (red line) and vertical conductance GY Y

(green line) are plotted in both CC phase of QSH state
(assuming CC phase for QSH state) and IC phase of
BSPT state. In the CC phase of QSH state, GXX

(GY Y ) experiences a power-law decay (increase) from the
plateau value (zero), and the power-law scaling relation
reflects the scaling dimension of single-particle tunneling
operators [27]. In the IC phase of BSPT state, how-
ever, both conductances share a similar power-law in-
crease from zero. In contrast to CC phase, the power of
temperature dependence is determined by two-particle
(bosonic-particle) tunneling, which only depends on K+.
With our previous estimation of K+ and K−, we find
∆GXX/Y Y ∼ T 0.07 for QSH state while ∆GXX/Y Y ∼
T 0.86 for BSPT state. Therefore, the temperature scal-
ing of GXX and GY Y reflects the tunneling mechanism
in the QPC for either QSH state or BSPT state.

Conclusion - We proposed that a simple QPC setup
“magically” implements two-terminal transport measure-
ments to unambiguously distinguish BSPT state from
QSH state. In particular, QPC reveals the fingerprints
of bosonic physics in the phase diagram of inter-edge
tunneling physics, and binds BSPT state with exotic IC
physics in bilayer graphene systems. We notice that the
IC phase has not been experimentally realized, probably
because it requires a strong interaction in conventional
QSH systems. In contrast, our estimate shows that it
can be driven by realistic Coulomb interaction in bilayer
graphene. Another great advantage of bilayer graphene
is that its QPC can be feasibly designed and controlled



5

by gate voltages, as shown in Fig. 1, which is absent in
other QSH systems. In the supplementary materials [27],
a detailed calculation of extracting effective charge from
shot noise spectrum is also presented. Bosonic 2e-charge
is found, which originates from the instanton tunneling
events of IC fixed point. Compared with this direct probe
of bosonic electric charge, the transport measurements
we proposed are much simpler and more feasible for ex-
periment realization.
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