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We define and compute many-body topological invariants of interacting fermionic symmetry-
protected topological (SPT) phases, protected by an orientation-reversing symmetry, such as time-
reversal or reflection symmetry. The topological invariants are given by partition functions obtained
by path-integral on unoriented spacetime which, as we show, can be computed for a given ground
state wave function by considering a non-local operation, “partial” reflection or transpose. As an
application of our scheme, we study the Z8 and Z16 classification of topological superconductors in
one and three dimensions.

The Thouless-Kohmoto-Nightingale-den Nijs (TKNN)
formula [1, 2] is the prototype for topological charac-
terization of phases of matter. It relates the quantized
Hall conductance to the (first) Chern number defined for
Bloch wave functions. At the level of many-body physics,
the quantized Hall conductance can also be formulated
in terms of ground state wave functions in the presence
of twisted boundary conditions (“the many-body Chern
number”) [3]. In contrast to local order parameters, the
TKNN integer distinguishes different quantum phases of
matter by focusing on their global topological properties.

More recently, the discovery of topological insulators
and superconductors [4, 5] has led to a new research fron-
tier, generally referred to as symmetry protected topolog-
ical (SPT) phases. These phases are adiabatically con-
nected to topologically trivial states, i.e., atomic insula-
tors which can be represented as simple product states
without any entanglement. Nevertheless, they are topo-
logically distinct once a symmetry condition, e.g., time-
reversal symmetry, is imposed. A complete classification
of the noninteracting fermionic SPT phases protected by
non-spatial discrete symmetries [6–8], as well as crys-
talline SPT phases protected by spatial symmetries [9–
12], were achieved.

However, it was later discovered that the non-
interacting topological classification is not the full story,
and can be dramatically altered once interaction effects
are taken into account [13]. Since then, there have been
several works which discuss the breakdown of the non-
interacting classification in the presence of interactions
[14–25].

There are various topological invariants for non-
interacting fermionic SPT phases using single-particle
states (e.g., Bloch wave functions). For example, the
Z2-valued topological invariants have been introduced
for topological insulators both in two and three spa-
tial dimensions [26–29]. For topological superconductors
protected by time-reversal symmetry, the integer-valued
topological invariants (“the winding number”) have been
introduced [6]. However, the discovered breakdown of
non-interacting classification clearly indicates that the
situation at the interacting level is more intricate, and
a general framework to distinguish interacting fermionic
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FIG. 1. (a) Introducing a cross-cap in the spacetime. (b)
partial reflection, and (c) partial time inversion. First and
second columns show the original connectivity after cutting
and the twisted bonding after gluing, respectively.

SPT phases is lacking. This should be contrasted from
the quantized Hall conductance, which can be formulated
within many-body physics without referring to single-
particle wave functions (as it is ultimately related to the
response function).

In this letter, we introduce many-body topological in-
variants for topological superconductors protected by an
orientation-reversing symmetry, such as time-reversal or
reflection symmetry. Our topological invariants do not
rely on single-particle descriptions, and have the same
status as the many-body Chern number [3].

The basic strategy behind our construction of many-
body topological invariants can be best illustrated by
drawing an analogy with the many-body Chern-number.
The many-body Chern number is formulated as a re-
sponse of the many-body ground state wave functions
to the twisted boundary conditions by U(1) phase. Here,
the U(1) phase is associated with the symmetry of the
system (i.e., the particle number conservation). Simi-
larly, for phases of matter with more generic symmetry,
one can consider twisting the boundary condition using
the symmetry of the system. For SPT phases protected
by orientation reversing symmetry, the symmetry-twisted
boundary conditions naturally give rise to unoriented
spacetime manifolds [24, 30–34]. From the topological
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quantum field theory description of topological supercon-
ductors [30, 34], one expects that the complex phase of
the partition function, when the system is put on an ap-
propriate unoriented manifold, is quantized and serves as
a topological invariant [35]. In the following, we design
many-body topological invariants, such that they return
the quantized phase of the partition function.

One-dimensional topological superconductors in sym-
metry classes D+R− and BDI.– We explain our scheme
by using the seminal example of 1D topological supercon-
ductors discussed by Fidkowski and Kitaev [13] to show
the breakdown of non-interacting classification (with a
slight variation in terms of symmetry requirements):

Ĥ = −
∑
x

[
tf†x+1fx −∆f†x+1f

†
x + H.c.

]
− µ

∑
x

f†xfx,

(1)

which describes a superconducting state of spinless
fermions. For simplicity, we take ∆ as a real param-
eter and set ∆ = t. The SPT phase in this model,
realized when |µ|/t < 2, is protected either by time-
reversal T fxT −1 = fx, T iT −1 = −i, or reflection
RfxR−1 = if−x. The former case belongs to symme-
try class BDI (characterized by time-reversal symmetry
where T 2 = 1), while the latter case is referred to as
symmetry class “D+R−” (class D with reflection sym-
metry R satisfying R2 = (−1)F where F is the fermion
number).

In the presence of either one of these symmetries, at
the level of non-interacting fermions, one can introduce
the integral topological index ν ∈ Z [10–12]. However,
the integral classification of the noninteracting fermions
collapses into the Z8 classification in the presence of in-
teractions [13, 36]. Namely, a stack of eight Majorana
chains can be adiabatically turned into the trivial phase
when symmetry preserving interactions are included.

Spacetime path-integral.– As advocated, we now put
the system on an unoriented spacetime and measure
the system’s response. We first present our many-body
invariant using the spacetime path-integral and subse-
quently present the corresponding formula in the op-
erator formalism, which only involves the many-body
ground states.

We start from the ordinary Euclidean path integral
representation of the partition function

Z = Tr(e−βĤ) =

∫
D[ξ]D[ξ̄] e−S[ξ̄,ξ], (2)

where S[ξ̄, ξ] =
∫ β

0
dτ [ξ̄∂τξ+H(ξ̄, ξ)], τ is the continuous

imaginary time variable, and the Grassmann variables
ξ(τ, x) and ξ̄(τ, x) are defined at time τ and real-space
position x and obey the anti-periodic temporal boundary
condition ξ(τ +β) = −ξ(τ), ξ̄(τ +β) = −ξ̄(τ). The path
integral is defined for the spacetime manifold, which is a
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FIG. 2. Phase and amplitude of the partition function in
the presence of spatial (Fig. 1(b)) and temporal (Fig. 1(c))
cross-caps (Details in Appendix B [35]. In short, we write
the partition function in terms of a Pfaffian and extract the
SPT phase by evaluating the ratio of the two Paffafians in the
presence and absence of a cross-cap.) Here, we set β = 10,
Nt = 200 and N = 40. We put Nt,part = 100 and Npart =
20 for time inversion (BDI) and spatial reflection (D+Refl.),
respectively.

torus T 2.

In order to create an unoriented spacetime manifold,
we “modify” the boundary condition of the path integral,
which effectively realizes the real projective plane RP 2.
The construction of the real projective plane depends
crucially on the type of orientation reversing symmetry
(reflection or time-reversal). First, for symmetry class
D+R−, we modify the temporal boundary condition at
τ = β ≡ 0 as

ξ(β + ε, x) = −ξ(0, x)→ −iξ(0,−x),

ξ̄(β + ε, x) = −ξ̄(0, x)→ iξ̄(0,−x), (3)

over the interval |x| < Npart/2 where the reflection is
done with respect to a vertical line crossing the central
bond of the segment (Fig. 1(b)). Here, ε is the discretiza-
tion step along the time axis, ε = β/Nt. What this proce-
dure does is to first introduce a cut (circle) in the space-
time path-integral and then identify opposite points on
the circle by reflection symmetry (Fig. 1(a)). In short,
this “cut and glue” process creates a cross-cap in the
spacetime manifold, which is now topologically equiva-
lent to RP 2.

As for symmetry class BDI, we begin by noting that in
the path-integral formalism, the time-reversal symmetry
which is an antiunitary transformation in the operator
formalism, should be implemented as an invariance un-
der a change of path-integral variables. For our model,
time-reversal transformation is equivalent to the change
of Grassmann fields as in ξ(τ, x)→ iξ̄(β−τ, x), ξ̄(τ, x)→
iξ(β−τ, x). One can check that this transformation leaves



3

h | i
h |Rpart| i

(a) (b)

| i
h |

| i
h |

I1 I2
Npart

FIG. 3. Schematic representation the ground state over-
lap (a) partial reflection, 〈Ψ|Rpart|Ψ〉, (b) partial transpose,

tr (ρIUI1ρ
T1
I U†

I1
). Solid squares represent physical sites and

vertical bonds represent how physical degrees of freedom con-
tracted between |Ψ〉 and 〈Ψ|.

the Hamiltonian (1) or, in fact, generic bilinear forms
H(ξ̄, ξ) =

∑
x,x′ [txx′ ξ̄(x)ξ(x′) + ∆xx′ ξ̄(x)ξ̄(x′) + H.c.] in-

variant. It is easy to see that possible two-body interac-
tion terms such as (ξ̄ξ)2 are also invariant. Similar to the
cross-cap introduced by twisting the temporal boundary
by reflection, one can twist the spatial boundary condi-
tion using time-reversal,

ξ(τ,N + 1) = −ξ(τ, 0)→ −iξ̄(τ̃ , 0),

ξ̄(τ,N + 1) = −ξ̄(τ, 0)→ −iξ(τ̃ , 0), (4)

over a time interval t1 < τ < t2 where 0 < t1, t2 < β and
the time inversion τ → τ̃ is performed with respect to
the central line τ = (t1 + t2)/2 of the interval (Fig. 1(c)).

The topological quantum field theory description of
topological superconductors implies that the partition
function Z of the canonical model (1) on RP 2 is given by
Z ∼ ei2π/8 (the eighth root of unity) in the topological
regime, corresponding to ν = 1 ∈ Z8, and Z ∼ 1 in the
trivial regime, corresponding to ν = 0. Moreover, the
complex phase is additive, i.e., stacking n copies of Ma-
jorana chain (1) results in Z ∼ ei2πn/8, and for instance,
we have Z ∼ 1 for n = 8 that is indicative of the trivial
phase. This is how the Z8 cyclic group is understood in
our scheme.

The numerically computed partition function in the
presence of a cross-cap is shown in Fig. 2. The results for
the symmetry classes BDI and D+R− match with each
other. Well inside the non-trivial SPT phase |µ|/t < 2
(i.e., when the size of the cross-cap is much bigger than
the correlation length), the phase of the partition func-
tion is quantized as Z ∼ ei

π
4 /
√

2, whereas in the trivial
phase Z ≤ 1 with no complex phase and Z → 1 deep in-
side the trivial phase (animations and Appendix J [35]).
The phase factor ei

π
4 is the Z8 phase associated with the

partition function on RP 2. We shall discuss more about
the amplitude |Z| momentarily.

Partial reflection.– The cross-cap in the path-integral
can be also implemented in terms of ground state wave
functions of the fermionic SPT phases. Let us now dis-
cuss this operator formalism. The reflection cross-cap
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FIG. 4. Partial reflection (5) for class D with reflection and
partial transpose (6) for class BDI in the Kitaev Majorana
chain. Here, N = 120 and Npart = 60.

can be expressed as the expectation value of a non-local
operator Rpart for a given wave function,

ZR = 〈Ψ|Rpart |Ψ〉 (5)

where Rpart is the partial reflection operator which re-
flects the sites within a segment of lattice with respect
to its central bond (dashed line in Fig. 3 (a)). This
quantity has been first proposed as a non-local order pa-
rameter to distinguish various topological phases of spin
chains [37–42], The overlap ZR can be also used as an
effective method to extract the topological invariant in
the reflection symmetric fermionic SPT phases.

Using the definition of reflection symmetry in the Ki-
taev chain (1), we can construct Rpart and compute ZR.
The result summarized in Fig. 4 confirms that Eq. (5)
shows a similar behavior to its path-integral counterpart.
(An analytical derivation of the same result for the fixed
point wave function at µ = 0 is provided in Appendix
D [35]). More examples including the s-wave supercon-
ducting nanowire construction [43] of Majorana chain,
and the symmetry class A with reflection are provided in
Appendix F [35].

Few remarks regarding the amplitude |Z| are in or-
der. First, in the topological phase, the factor

√
2 in

the denominator is the quantum dimension of Majorana
fermions and physically related to breaking two bonds
between the adjacent fermion sites. For instance, in the
case of class A, |Z| = 1/2 in the topological phase cor-
responding to the quantum dimension of fermionic zero
modes (as opposed to Majoranas) at the ends. Second,
in the trivial phase |Z| is 1 only in the infinite gap limit
and the smooth transition from 1/

√
2 to 1 indicates finite

size effects. Another important fact is that Z is a bulk
quantity and hence independent of the physical boundary
conditions at the ends of a long chain.
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Partial time-reversal.– Let us now discuss the way
to implement the time-reversal cross-cap in terms of a
given ground state wave function. To this end, simi-
lar to the partial reflection, we need to introduce partial
time-reversal transformation. Implementation of partial
time-reversal is slightly more complicated than partial re-
flection, since time-reversal is anti-unitary (i.e., it is not
clear how to define a partial complex conjugation). We
first explain how to resolve this issue for 1D bosonic SPT
phases with time-reversal symmetry T = UK where K is
the complex conjugation and U is a unitary acting on lo-
cal degrees of freedom. Our strategy is to start with the
amplitude of full symmetry transformation | 〈Ψ|T |Ψ〉 |
rather than 〈Ψ|T |Ψ〉, since the latter is simply not gauge
invariant. Using the definition of time-reversal operator,
we write | 〈Ψ|T |Ψ〉 |2 = tr (ρUρTU†), where ρ = |Ψ〉 〈Ψ|
is the density matrix and we use the Hermiticity prop-
erty ρ∗ = ρT . At this stage, we can conveniently define
the topological invariant in terms of a partial symme-
try transformation by introducing the partial transpose
of the density matrix,

ZT = tr
(
ρIUI1ρ

T1

I U
†
I1

)
. (6)

Here, we consider two adjacent intervals I1,2 of the to-
tal system S, ρI = trS\I(|Ψ〉 〈Ψ|) is the reduced density
matrix for the region I = I1 ∪ I2, and the unitary trans-
formation UI1 acts only in the region I1. ρT1

I is the partial
transpose of ρI , and for bosonic systems is defined by

ρT1

I =
∑
ijkl

|e1
i , e

2
j 〉 〈e1

k, e
2
j |ρI |e1

i , e
2
l 〉 〈e1

k, e
2
l | , (7)

where |e1
j 〉 and |e2

k〉 denote an orthonormal set of states
in the I1 and I2 regions. The definition (6) is shown
diagrammatically in Fig. 3(b) and is equivalent to the
topological invariant discussed previously in Ref. [39] for
spin chains. Here, it is important that I1 and I2 are
adjacent regions; as we show in Appendix G [35], this
configuration is topologically equivalent to introducing a
cross-cap in the spacetime [41].

The topological invariant (6) may resemble the con-
currence in the context of quantum information [44–46];
however, Eq. (6) is different from the concurrence where
one takes the full transpose of the density matrix. In
addition, the eigenvalues of the partially transposed den-
sity matrix ρT1

I can be used to define another measure of
quantum entanglement called the negativity, which has
been shown as an effective probe of the entanglement in
mixed states [47–52].

To generalize the expression (6) for fermionic systems,
we need to define a proper partial transpose for fermions.
This is more transparent when the density matrix is ex-

panded in the coherent state basis

ρI =

∫
d[ξ̄, ξ]d[χ̄, χ] |{ξj}〉 ρI

(
{ξ̄j}; {χj}

)
|{ξj}〉 〈{χ̄j}| ,

where d[ξ̄, ξ] =
∏
j dξ̄jdξje

−
∑
j ξ̄jξj and ρI

(
{ξ̄j}; {χj}

)
=〈

{ξ̄j}
∣∣ ρI ∣∣ {χj}〉. Using the transformation rules for con-

structing a time-reversal cross-cap in the path integral
formalism (Eq. (4)), the analog of Eq. (7) for fermions
can be defined as

UI1ρ
T1

I U
†
I1

:=

∫
d[ξ̄, ξ]d[χ̄, χ] |{−iχ̄j}j∈I1 , {ξj}j∈I2〉

× ρI
(
{ξ̄j}; {χj}

)
〈{−iξj}j∈I1 , {χ̄j}j∈I2 | .

The change of variable is effectively equivalent to apply-
ing the time-reversal operator only to I1. An alternative
definition of the partial transpose is given in terms of
Majorana operators (Appendix G [35]).

Figure 4 shows the numerically computed ZT of the
Majorana chain (1). Well inside the SPT phase, ZT is
given by ZT ∼ ei

π
4 /2
√

2 whereas ZT ≤ 1 in the triv-
ial phase. Therefore, partial transpose may serve as a
non-local operation to obtain the complex phase of the
partition function on RP 2 (See Appendix G [35] for an-
alytical derivation and further examples).

Higher dimensions.– Our scheme, illustrated so far for
1D topological superconductors, can be generalized to
other fermionic SPT phases, in particular to higher di-
mensions. As an example, let us consider the inversion
symmetric topological superconductor in class D in 3D
(e.g., 3He-B phase). It can be modeled by the BdG
Hamiltonian on a cubic lattice, which is given in mo-
mentum space as Ĥ = (1/2)

∑
k Ψ†(k)h(k)Ψ(k), where

Ψ†(k) = (f†↑(k), f†↓(k), f↓(−k),−f↑(−k)), and

h(k) = [−t(cos kx + cos ky + cos kz)− µ] τz

+ ∆ [sin kxτxσx + sin kyτxσy + sin kzτxσz] . (8)

This model is invariant under inversion Ifσ(x, y, z)I−1 =
ifσ(−x,−y,−z) (Appendix H [35]). The topological clas-
sification is known to be Z16, and can be captured by
the path-integral on the four dimensional real projective
space RP 4, which can be realized by introducing a cross-
cap in S4 [30, 34, 53, 54]. To define the corresponding
topological invariant in terms of the ground state |Ψ〉,
we consider the expectation value of the partial inversion
ZI = 〈Ψ|Ipart|Ψ〉, which acts on a closed three ball. The
numerically computed SPT invariant is shown in Fig. 5.
It is quite remarkable that the partial inversion yields
the correct Z16 and Z8 complex phases in the topological
phases characterized by odd and even number of gapless
Majorana surface modes, respectively.

Discussion.– In conclusion, we present an approach to
detect interacting SPT phases by creating a spacetime
cross-cap in the path-integral. We introduce non-local
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FIG. 5. SPT invariant for the three-dimensional inversion
symmetric superconductor (class D), Eq. (8). Top. I (II)
corresponds to the phase with odd (even) number of gapless
Majorana surface states. Here, N = 123 and Npart = 63.

order parameters partial reflection/transposition to di-
agnose many-body SPT phases. While we use a non-
interacting fermionic model (the Kitaev chain (1)) to
demonstrate our method, we emphasize that our topolog-
ical invariants are applicable to interacting models and
can be used in numerical simulations, such as quantum
Monte Carlo. In Appendix F [35], we present the calcu-
lation of the topological invariant in an interacting Majo-
rana chain, by making use of the known exact expression
of the ground state [55]. In addition, throughout this let-
ter, we consider BCS mean-field wave functions which do
not preserve the particle number. One important ques-
tion is whether the partial transformation works for par-
ticle number conserving systems or not [56–60]. As a first
step in this direction, we examine the partial reflection
for projected-BCS wave functions, obtained by project-
ing the ground state of the mean-field Hamiltonian (1)
to the space of fixed number of particles. Using varia-
tional Monte Carlo, we find that the phase of Z remains
quantized as in the mean-field wave function (Appendix
I [35]). Another important issue is the robustness of SPT
invariants in the presence of the random disorder [61].
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Läuchli, and P. Zoller, Phys. Rev. Lett. 111, 173004
(2013).

[59] G. Ortiz, J. Dukelsky, E. Cobanera, C. Esebbag, and
C. Beenakker, Phys. Rev. Lett. 113, 267002 (2014).

[60] G. Ortiz and E. Cobanera, arXiv:1601.07764 (2016).
[61] K. Shiozaki, H. Shapourian, and S. Ryu,

arXiv:1609.05970 (2016).
[62] M. Wimmer, ACM Trans. Math. Softw. 38, 30:1 (2012).
[63] V. G. Turaev, Homotopy quantum field theory (EMS

Tracts in Mathematics), Vol. 10 (European Mathemat-
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