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Despite rapidly growing interest in harnessing machine learning in the study of quantum many-
body systems, training neural networks to identify quantum phases is a nontrivial challenge. The
key challenge is in efficiently extracting essential information from the many-body Hamiltonian or
wave function and turning the information into an image that can be fed into a neural network.
When targeting topological phases, this task becomes particularly challenging as topological phases
are defined in terms of non-local properties. Here we introduce quantum loop topography (QLT):
a procedure of constructing a multi-dimensional image from the “sample” Hamiltonian or wave
function by evaluating two-point operators that form loops at independent Monte Carlo steps.
The loop configuration is guided by characteristic response for defining the phase, which is Hall
conductivity for the cases at hand. Feeding QLT to a fully-connected neural network with a single
hidden layer, we demonstrate that the architecture can be effectively trained to distinguish Chern
insulator and fractional Chern insulator from trivial insulators with high fidelity. In addition to
establishing the first case of obtaining a phase diagram with topological quantum phase transition
with machine learning, the perspective of bridging traditional condensed matter theory with machine
learning will be broadly valuable.

Introduction– Machine learning techniques have been
enabling neural networks to recognize and interpret big
data sets of images and speeches[1]. Through super-
vised training with a large set of data, neural networks
‘learn’ to recognize key features of a universal class.
Very recently, rapid and promising development has been
made from this perspective on numerical studies of con-
densed matter systems, including dynamical systems[2–
6] as well as classical and quantum systems undergoing
phase transitions[7–13]. Also established is the theory
connection to renormalization group[14, 15]. Exciting
successes in application of machine learning to symme-
try broken phases[7–10] may be attributed to the locality
of the defining property of the target phases: the order
parameter field. The snap-shots of order parameter con-
figuration form images readily fed into neural networks
well-developed to recognize patterns in images.

Unfortunately many novel states cannot be detected
through a local order parameter. All topological phases
are intrinsically defined in terms of non-local topolog-
ical properties. Not only many-body localized states
of growing interest[16] fit into this category, even a su-
perconducting state fits in here since the superconduct-
ing order parameter explicitly breaks particle number
conservation[17]. In order for neural networks to learn
and recognize such phases, we need to supply them with
“images” that contain relevant non-local information.
Clearly information based on single site is insufficient.
One approach to topological phase was to add complexity
to the neural network architecture and use layers of con-
volutional filters to detect local constraints in the pres-
ence of translational symmetry, targeting a single topo-
logical phase at a time[7, 10]. Another approach was
to detect the topological edge states[13]. In addition, en-
semble of the Green’s function was used to detect charge-

ordered phases[9].

Here we introduce quantum loop topography (QLT): a
procedure that designs and selects the input data based
on the target phases of interest guided by relevant re-
sponse functions. We focus on the fermionic topologi-
cal phases but the procedure can be generalized to other
situations that are not captured by purely local infor-
mation, as all physically meaningful states are char-
acterized by their response functions. The subject of
topological phases of matter has grown with the ap-
peal that topological properties are non-local and hence
more robust[18–20]. Ironically this attractive feature
makes it difficult to detect and identify topological phases
even in numerics. Importantly, detection of strongly-
correlated topological phases as fractional quantum Hall
states[21, 22], fractional Chern insulators[23, 24], quan-
tum spin liquids[25–27] requires arduous calculations of
topological entanglements entropies[28, 29]. On the other
hand, quantization[21–24, 30–34] is a natural theme of
topological states and one may wonder whether there is
an intelligent way to detect them due to the discrete-
ness in defining properties. In this letter we demonstrate
that QLT enables even a rather simple architecture con-
sisting of a fully-connected neural network with a single
hidden layer to recognize Chern insulator and fractional
Chern insulator states and rapidly produce a phase di-
agram containing topological quantum phase transition
(TQPT). We then discuss insights into the effectiveness
of QLT and future directions based on its versatility.

Quantum Loop Topography and our algorithm– The
procedure we dubbed QLT constructs an input image
from a given Hamiltonian or many-body wave function
that contains minimal but sufficient amount of non-local
information. The response function that characterizes
the phase of interest determines the geometry of the loop
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FIG. 1. Schematic illustration of our machine learning algo-
rithm consisting of QLT and a neural network architecture.
QLT for each site j consists of 4 loops of linear dimension
d = 1. One loop of d = 3 is also shown for illustration. QLT
of d ≤ dc form a D(dc)-dimensional vector for each site j,
e.g., D(1) = 4 on a square lattice.

objects that enter QLT. But instead of brute-force eval-
uation of the response functions, we use QLT obtained
from instances of Monte Carlo to train and utilize a net-
work.
For Chern insulators, the relevant response function is

the Hall conductivity. Interestingly Kitaev [35] pointed
out that

σxy =
e2

h
·
1

N

∑

4πiPjkPklPljS△jkl (1)

for free fermion systems[36], where Pij ≡ 〈c†i cj〉 is the
equal-time two-point correlation function between sites
i and j, S△jkl is the signed area of triangle jkl, and N
is the total number of sites. Taking hints from Eq. (1)
we use triangular loops to define QLT for Chern insula-
tors. But instead of the full expectation value for two-
point correlation functions in Eq. (1) which are costly to
evaluate (requiring many instances of Monte Carlo walk-
ing down the Markov chain), we evaluate the bilinear
operator with a single Monte Carlo sample α defining

P̃jk|α ≡
〈

c†jck

〉

α
. Further we note that smaller triangles

dominate in a gapped system and keep the loops of linear
dimension d ≤ dc, where dc is the cut-off.
Now we define QLT to be a quasi-two-dimensional “im-

age” of D(dc)-dimensional vector of complex numbers as-
signed to each lattice site j. Each entry of this vector
is associated with a distinct triangle cornered at site j
which defines a chained product

P̃jk|αP̃kl|βP̃lj |γ (2)

where k and l are two other sites of the particular trian-
gle, and P̃ ’s are evaluated at three independent Monte
Carlo steps without averaging over Markov chain. D(dc)
is the total number of triangles with d ≤ dc assigned to
each site(see Fig. 1). This way, QLT can be systemat-

ically expanded to include longer-ranged correlations by
increasing cut-off dc until convergence.
By construction QLT is quite versatile. Firstly, QLT

can be obtained for and mapped between different lattice
geometry, which only enters through D(dc). Secondly,
the entire procedure takes place in real space without
need for diagonalization or flux insertion and does not
depend on translational invariance. Hence QLT should
naturally accommodate heterogeneity, disorder and inter-
action. Finally, it is clear that the strategy underlying
QLT construction we have laid out can be generalized to
other novel phases such as Z2 topological order, quan-
tum spin Hall insulator, or superconductivity[37]. In the
rest of this paper we use Variational Monte Carlo(VMC),
without loss of generality, to build QLT by sampling the
many-body ground states of interest at randomly selected
Monte Carlo steps (see Supplemental Material).
Once QLT is obtained for a given model, we feed it to

a neural network(Fig. 1). For this, we design a feed-
forward fully-connected neural network with only one
hidden layer consisting of n = 10 sigmoid neurons. The
network takes QLT as an input x and each neurons pro-
cesses the input through independent weights and biases
w · x+ b. After the sigmoid function, the outcome is fed
forward to be processed by the output neuron. The final
output y corresponds to the neural network’s judgement
whether the input QLT is topological. We use cross en-
tropy as the cost function with L2 regularization to avoid
over-training and a mini-batch size of 10[1]. For the rest
of this paper, we use randomly-mixed 20000 data samples
within the VMC Metropolis of the topological and trivial
phases as the training group. We reserve a separate group
of 4000 data samples (also half trivial and half topologi-
cal) for validation purposes including learning speed con-
trol and termination[1]. Once the machine learning is
successful, the trained neural network can rapidly pro-
cess QLT’s from different parts of the phase space to
yield a phase diagram. In order to establish level of con-
fidence on the trained network’s assessment of whether
the system is topological or not, we process 2000 QLT’s
at each point and take the ratio p of ‘topological’ output,
i.e., y > 0.5. When p is close to 1 for topological phase
and 0 for trivial phase, it indicates even a single QLT can
reliably land a trustworthy detection.
Topological quantum phase transition in a free fermion

model–We first apply the QLT-based machine learning to
the TQPT between trivial insulator and Chern insulator.
Consider the following tight-binding model on a square
lattice:

H(κ) =
∑

~r

(−1)yc†~r+x̂c~r + [1 + (−1)y(1 − κ)]c†~r+ŷc~r

+ (−1)y
iκ

2

[

c†~r+x̂+ŷc~r + c†~r+x̂−ŷc~r

]

+ h.c. (3)

where ~r = (x, y) (see Fig. 2) and 0 ≤ κ ≤ 1 is a tuning
parameter. The κ = 1 limit is the π-flux square lattice
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FIG. 2. Model illustration of Eq. 3. The unit cell consists of
two sublattice sites A and B. Hopping strengths are different
for horizontal and vertical bonds and staggered. The diagonal
hopping is iκ (−iκ) along (against) the arrow. The red arrows
denotes a triangle that defines the operators of our QLT.

model for a Chern insulator with Chern number C =
1 [31], while the κ = 0 limit amounts to decoupled two-
leg ladders. H(κ) interpolates between Chern insulator
and trivial insulator with a TQPT at κ = 0.5. To see
this, Fourier transform the Hamiltonian to momentum
space

H (κ) =
∑

k

[2 cosky + 2i sinky (1− κ+ κ sinkx)] c
†
k,Ack,B

+2 coskx(c
†
k,Ack,A − c†k,Bck,B) + h.c. (4)

where A and B label the two sublattices, and note
that in this two-band model with two Dirac points at
(±π/2, π/2), one of the Dirac masses changes sign across
κ = 0.5.
Our complete knowledge of the phase diagram makes

Eq. 3 an ideal testing ground for our algorithm. Hence we
implement supervised machine learning using two deep-
in-phase models of κ = 1.0 (Chern insulator) and κ = 0.1
(trivial insulator) for training[38]. The system size is
12 × 12 lattice spacings unless noted otherwise. First
we establish that indeed single-site-based inputs of the
fermion occupation configurations n(~r) = c†~rc~r fail to
transmit the topological information to the neural net-
work, as we expected. With n(~r) as inputs, the learning is
inefficient, signaled by high yields in the cost function[1].
Moreover, as shown in Fig. 3, even after a long period
of training the neural network keeps incorrectly judging
the system to be a trivial insulator for all values of κ,
except for κ = 1.0 where the result returns > 80% ‘non-
trivial’. This indicates that the neural network unfor-
tunately does not pick up the universal features about
the topological phase, but rather memorizes the details
of the specific model at κ = 1.0.
The contrast in the results based on QLT input is strik-

ing. Fig. 3 shows that the trained network’s assessment
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FIG. 3. The ratio p of ‘topological’ response from the neural
network on the model in Eq. 3 over the parameter region κ ∈

[0.1, 1, 0]. The neural network is trained with κ = 0.1 for y = 0
and κ = 1 for y = 1. The green square symbols represent the
results using fermion occupation configurations as an input
data. Red dashed line marks the expected topological phase
transition at κ = 0.5. The inset: an enlarged view over the
critical region 0.4 ≤ κ ≤ 0.6. dc = 2 for all.

achieves > 99.9% accuracy deep in either the topolog-
ical phase or trivial phase even with dc = 2. More-
over, even though we have provided the training group
with only large-gap models in both topological and triv-
ial phases focusing on identifying phases[39], we find a
non-analytical behavior in p as a function of κ at the
critical point [see Fig. 3 inset].

Generalizations– Next we consider a fractional Chern
insulator (FCI) as an example of strongly-correlated
topological phase. Here the ν = 1/3 FCI is repre-
sented by a VMC wave function that is the free fermion
wave function of the model in Eq. 3 raised to the third
power[40]. Surprisingly the neural network trained on
non-interacting parent Chern insulator already serves as
a ‘poor man’s network’ (see the inset of Fig. 4). This
network recognizes that FCI phase is distinct from the
parent Chern insulator and hence it only gives p ∼ 0.01
‘nontrivial’ response for the FCI phase. Nevertheless it
also notices that FCI is a topologically distinct state from
the trivial insulator since p ∼ 0.01 is large enough to ex-
clude statistical error. Once trained with the FCI wave
function at two reference points κ = 0.1 for trivial and
κ = 1.0 for FCI, the network once again detects FCI
phase with high accuracy [see Fig. 4].

Remarkably the network automatically recognizes
topological degeneracy. Even we train the network with
only one of the degenerate ground states in the topo-
logical phase (GS#1 in Fig. 4), it correctly assess topo-
logical nature of the two other ground states that are
related to GS#1 by flux threading. The network also
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FIG. 4. Application to a ν = 1/3 FCI. The topological phase
transition in the parent Chern insulator at κ = 0.5 is marked
by a vertical red dashed line. The inset shows the results using
neural network trained with the parent free fermion model,
where p is calculated over 20000 samples for each κ to reduce
statistical error. The main panel shows the results using FCI
wave functions for both training (κ = 0.1 for trivial and κ =
1.0 for the FCI, first ground state only) and testing (all three
degenerate ground states, see Supplemental Material). L =
16 data is shown in addition to L = 12 to help attribute the
differences between κc of the topological phase transitions to
the finite-size effect. dc = 2 for all.

detects a TQPT at 0.67 ≤ κc ≤ 0.77. The uncertainty
in the critical value κc is a finite-size effect on the quasi-
degeneracy as is clear from the convergence upon increas-
ing the system size. The fact that κc > 0.5 when the
single-particle gap closes at κ = 0.5 could raise concern
in light of the findings on single-particle Green’s function
based approaches[41, 42]. We note that single-particle
gap is a pre-requisite for the VMC wave function to rep-
resent a topological phase since only then partons may
be integrated out, hence the shift of κc > 0.5 is expected.
Nevertheless, the result is the first report of the TQPT
providing the target, and calls for further study on the
critical point using independent measures such as many-
body gap or the more established yet costly entanglement
entropy based approaches[28, 29, 40, 43, 44].

Finally, we demonstrate that we can train the net-
work to learn the topological protection of the topological
phases, and show indifference to the microscopic details
such as lattice structure or impurities. The key to suc-
cessful machine learning this celebrated feature is the di-
versity of the training inputs. Without diverse inputs,
the network looks for features that are specific to its
training set. For instance, the network trained only with
square lattice cannot recognize the topological phase in
the honeycomb lattice. But if we provide diverse input
taken from both the square lattice and the honeycomb
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FIG. 5. The ratio p of ‘topologically nontrivial’ response from
the neural networks for the honeycomb lattice model (Sup-
plemental Material) over the parameter region κ ∈ [0.1, 1, 0].
The topological phase transition is at κ = 0.5 (vertical red
dashed line). The neural networks are trained using the Chern
insulators and trivial insulators only on the honeycomb lat-
tice, only on the square lattice, and on both. The inset zooms
into the critical region 0.4 ≤ κ ≤ 0.6. dc = 2 for all.

lattice systems, the network can be trained to recognize
topological phases on both lattices with little penalty on
accuracy (see Fig. 5). We also note that the network
recognizes the difference between different Chern num-
bers (e.g., C = −1 v.s. C = 1) as well as higher Chern
numbers (e.g., C = 2).

Conclusion– In summary, we have successfully im-
plemented supervised machine learning for topological
phases by introducing QLT as an interface between tra-
ditional concept of response theory and a simple neural
network.

Three major strengths of our QLT-based machine
learning approaches are 1) efficiency, 2) accuracy, and
3) versatility. Firstly, the network can be trained with
quasi-two-dimensional QLT in gapped phases. Further-
more since QLT bypasses the time-consuming process
of averaging over Markov chains, one can quickly scan
the phase space once the network is trained. Although
our focus was on the phases, we demonstrated that non-
analyticity in the ratio of non-trivial response allows us
to pinpoint the phase transition. Finally, as a real-space
based formalism that does not requires translational sym-
metry, or diagonalization or flux insertion, QLT is quite
versatile.

Our approach can also be applied to systems with other
fillings as well as higher dimensions. The fact that QLT
readily handles degenerate ground states adds to its ver-
satility. Moreover there is nothing restricting QLT to
VMC data. It can be applied to Hamiltonian-based quan-
tum Monte Carlo samples[41, 42] as well as other rep-
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resentations of many-body wave functions such as ma-
trix product states and PEPS. Most importantly, the
procedure of defining appropriate QLT guided by rele-
vant response function we established here is readily ex-
panded to other state of interest such as superconducting
state, quantum spin Hall insulator, and Z2 topological
order[37]. Hence our construction opens door to appli-
cations of the machine learning to novel states of broad
interest.

Acknowledgements We thank E. Khatami, R. Melko,
T. Neupert and S. Trebst for insightful discussions. This
work was supported by the DOE under Award DE-
SC0010313. YZ acknowledges support through the Bethe
Postdoctoral Fellowship and E-AK acknowledges Simons
Fellow in Theoretical Physics Award #392182. Bulk of
this work was done at KITP supported by Grant No.
NSF PHY11-25915.

∗ frankzhangyi@gmail.com
† eun-ah.kim@cornell.edu

[1] Michael Nielsen, Neural Networks and Deep Learning

(Free Online Book, 2013).
[2] S. S. Schoenholz, E. D. Cubuk, D. M. Sussman, E. Kaxi-

ras, and A. J. Liu, Nat Phys 12, 469 (2016).
[3] M. H. Amin, E. Andriyash, J. Rolfe, B. Kulchytskyy,

and R. Melko, arXiv:1601.02036.
[4] G. Carleo and M. Troyer, arXiv:1606.02318.
[5] G. Torlai and R. G. Melko, (), arXiv:1606.02718.
[6] G. Torlai and R. G. Melko, (), arXiv:1610.04238.
[7] J. Carrasquilla and R. G. Melko, arXiv:1605.01735.
[8] L. Wang, Phys. Rev. B 94, 195105 (2016).
[9] P. Broecker, J. Carrasquilla, R. G. Melko, and S. Trebst,

arXiv:1608.07848.
[10] K. Ch’ng, J. Carrasquilla, R. G. Melko, and E. Khatami,

arXiv:1609.02552.
[11] J. Liu, Y. Qi, Z. Y. Meng, and L. Fu, arXiv:1610.03137.
[12] L. Huang and L. Wang, arXiv:1610.02746.
[13] T. Ohtsuki and T. Ohtsuki, arXiv:1610.00462.
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