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The lack of analytical solutions for the exit momentum in laser-driven tunneling theory is a well
recognized problem in strong field physics. Theoretical studies of electron momentum distributions
in the neighborhood the tunneling exit depend heavily on ad hoc assumptions. In this report, we
apply a new numerical method to study exiting longitudinal electron momentum distribution under
intense short-pulse laser excitation. We present the first realizations of the dynamic behavior of an
electron near the so-called tunneling exit region without adopting a tunneling approximation.
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Strong-field AMO physics is an exceptional domain in
science. For several decades it has been yielding an array
of unexpected and sometimes strongly counter-intuitive
experimental findings. It has done this just by combining
long-familiar elements (atoms and photons) at high laser
field strengths on a very short time scale. It is one of the
few domains in physics where non-perturbative theory
can confront feasible experiments that enter new param-
eter spaces, in this case the realm of attoscience. Here we
take two steps that resolve an existing strong-field con-
flict and in doing so provide long-needed ab initio results
which show time dependent oscillations in the momen-
tum of an electron in the vicinity of what is called the
tunneling exit.

Ionization is an essential element of strong-field AMO
physics because it is the first step leading to some of
the most intriguing phenomena including, for instance,
high harmonic generation (HHG) [1], non-sequential dou-
ble ionization (NSDI) [2, 3] and the arena of attosec-
ond science generally [4]. Semi-classical models are the
dominant theoretical approach in studying strong field
ionization. In such a model, an electron first non-
perturbatively tunnels through a tilted Coulomb poten-
tial barrier, and then flies away along a classical trajec-
tory [5, 6].

A typical semi-classical simulation model depends on
the widely used ‘adiabatic’ tunneling condition [7, 8],
which adopts the approximation that the ionizing laser
frequency is much slower than the bound electron’s Bohr
frequency. However, in recent years, the adiabatic tun-
neling theory has been challenged [9–13]. These advanced
studies raise the question: if the tunneling process is non-
adiabatic and significantly time-dependent, how do we
describe an electron’s momentum distribution near the
tunneling exit point, especially its momentum compo-
nent longitudinal to the laser field’s major polarization
axis?

We emphasize the longitudinal momentum here since
the distributed wave function of an electron that is
nominally under the potential barrier can be strongly

affected by the laser in the direction of the field. Some
theoretical results [14, 15] provide approximate formulas
for the asymptotic longitudinal momentum, but accu-
rate analytical expressions are not known for the ‘exit’
longitudinal momentum or its standard deviation at
the tunneling exit point. The difficulty to be expected
in overcoming this lack has been recently noticed and
emphasized by the strong-field physics community
[16–18] and the earliest analysis of this issue remains
prominently relevant:

“· · · Uncertainty in the moment of tunneling, which is
responsible for the uncertainty in the initial velocity,
also means that it is virtually impossible to separate the
initial velocity distribution from the distortions caused
by the electric field during this temporal uncertainty.”
[19].

When physicists adopt an adiabatic tunneling model
in studying longitudinal momentum, they may easily find
controversial results. Pfeiffer et al. and Sun et al. have
used similar experimental techniques to reveal the mo-
mentum distributions at the tunneling exit for helium
and krypton atoms [16, 18]. A coordinated backward
processing method has been employed by both groups to
find values and standard deviations of the exit’s longitu-
dinal momentum.

In the backward processing method, in the first step,
an electron is assumed to tunnel through the potential
barrier and to appear outside the barrier with some prob-
ability. The timing and position of the tunneling elec-
tron and its ionization probability are decided by the
adiabatic tunneling model. Then, by randomly choosing
from a presumed distribution, one assigns a momentum
to the tunneled electron. The longitudinal component of
this artificial momentum distribution is a gaussian dis-
tribution centered at zero and has a presumed standard
deviation [16]. In the second step, one uses the tunneling
exit position and the tunneling probability given by the
ionization model and the model momentum as the initial
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conditions of a classical trajectory. By comparing the
numerical far-field (asymptotic) momentum distributions
(especially the longitudinal part) against the experimen-
tal data at different ellipticities, one finds the exit longi-
tudinal momentum standard deviation values that give
the least absolute error between the numerical results
and the experimental data. Both groups [16, 18] con-
clude that this backward processing method can define
the exit longitudinal momentum distributions for differ-
ent ellipticities at the tunneling exit point. Surprisingly,
the same approach leads to contradictory conclusions.

By applying backward processing and making a strict
quantitative comparison between data and simulating re-
sults, Pfeiffer et al. have found that the tunneling elec-
tron emerges with a non-zero standard deviation ranging
from 0.5 (ε=0.55) to 1.3 (ε=0.15) atomic units (a.u.) in
its exit longitudinal momentum [16]. Hofmann et al. re-
confirmed that a non-zero exit longitudinal momentum
spread is crucial to reach quantitative agreement between
the numerical and experimental data [17].

However, using experimental observations of krypton
ionization, Sun et al. [18] and Li et al. [20] reach an
opposite conclusion. They compare the longitudinal mo-
mentum data of krypton to backward processing simula-
tions and demonstrate that near-zero choices of the exit
longitudinal momentum standard deviation between 0.0
and 0.2 a.u. are more credible. Sun et al. conclude that a
zero exit longitudinal momentum width is still a valid exit
momentum distribution to use in a semi-classical model.

These two different conclusions show that the exit lon-
gitudinal momentum distributions given by a backward
processing method may heavily depend on the initial-
condition assumptions.

In any discussion of ionization, it is important to re-
main aware that experiments have no direct access to
electron behavior at the ‘moment’ or ‘location’ of a ‘tun-
nel exit’ or ‘release’ from the ion, if such non-quantum
language even makes sense. These artificial ‘initial’ con-
ditions of classical trajectories are used in almost all semi-
classical models due to the absence of a full analytical ex-
pression of the tunneling ionization. In recent advanced
experiments using strong ultra-fast laser pulses, the tun-
neling ionization model has begun to lose its predictive
power. One can always retrieve a best fitting result by
manipulating the initial conditions. In such cases, a semi-
classical model regresses to a mere mathematical tool.

By contrast, exploration of the confusion/conflict
about important features of the exit momenta is very di-
rect when using the SENE (Schrödinger equation - New-
ton equation) method, which has been introduced and
extended in [21, 22]. It provides, we believe, the first
results that are not under the control of a tunneling as-
sumption. Both longitudinal and transverse standard de-
viations, as well as correlations can be calculated. As far
as a ‘tunnel exit’ is concerned, the distribution of times
of arrival to almost any exit point is also available.

In this report, we show that the SENE method can
not only resolve the conflict between experiments, but
also can help in retrieving the dynamical behavior of
an electron near the imprecisely known tunneling zone.
We follow the laboratory conditions used for helium and
krypton atoms [16, 18] and first numerically solve a two-
dimensional TDSE in the polarization plane (x-y plane)
for the quantum wave function in a soft-core Coulomb
potential V = −1/

√
a2 + r2 [25, 26], where the bound-

electron’s wave function Ψ(~r, t) at t = 0 is numerically
found by imaginary time integration. We use a = 0.28
(0.5) a.u. to have a ground state energy of -0.9 (-0.51)
a.u. to match the ionization potential of helium (kryp-
ton). A laser pulse starts to interact with the wave func-

tion at t = 0. The laser field ~E(t) in a.u. is given by

~E(t) =

√
I

1 + ε2
f(t)[sin(ωt+ ζ)êx +ε cos(ωt+ ζ)êy] (1)

For helium calculations, the laser field has a wavelength
of 788 nm and a FWHM of 33fs. The peak laser in-
tensity is I=0.8 PW/cm2, f(t) is a sine-squared shape
envelope function which has maximum value 1 and ζ is
the carrier-envelope phase (CEP) [27]. For krypton, the
wavelength is still 788nm, but the peak intensity drops
to 0.12PW/cm2 and the FWHM drops to 25fs. We ap-
ply the SENE with different ε values ranging from 0.2 to
0.93. To mimic a random CEP, we use five CEPs evenly
distributed between (0, 2π) for each ε value. The size of
our discrete numerical time step is 0.02 a.u.

To confirm that the SENE results can lead to a quan-
titative agreement with experimental data, we have also
compared our numerical far-field longitudinal momentum
standard deviations σff

x with experiment [16]. We follow
the definition of the longitudinal momentum standard
deviations in [14, 16]. The asymptotic longitudinal mo-
mentum is defined as the momentum component along
the major polarization direction (x-axis). In Fig. 1, we
include experimental data from [16], and a theory func-
tion curve from [14]. The formula for the theory line is
σff
x =

√
3ω/2γ3(1− ε2).

Comparing with a tunneling semi-classical model, the
SENE competitive advantage is obvious. One does not
need to rely on the unprovable presumption that an elec-
tron is ionized through tunneling despite being exposed
to unknown dynamical effects, and finally appears out-
side the barrier with a specific momentum and a zero
tunneling time. Instead, all information is obtained by
integrating the TDSE and is extracted by numerical de-
tectors (ND) described previously [21, 22]. By splitting
the computing space into an inner part and an outer
part, the SENE method shares some common features
with other advanced numerical methods (e.g., ARM by
Barth, et al. [23], t-SURFF by Scrinzi [24]).

In recent researches, the SENE method has been
proved a useful model in studying non-adiabatic tunnel-
ing process with a non-zero tunneling time delay [28, 29].
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FIG. 1: The final momentum spread in the x direction. In this
graph, we show σff

x values of a theory line (black solid line)
[14], experiment data points (red circles) [16], and the SENE
result using grid map step size dL =0.4 a.u. (blue triangles).
At ε =0.2, 0.5 and 0.8, we also show the SENE results using
dL =0.2 as a ‘theoretical error bar’. The results of dL = 0.4
and 0.2 converge at all three ellipticities.

However, the electron’s dynamic motion under the bar-
rier is still an unsolved question. In this paper, we use
numerical detectors [21] to study the momentum distri-
butions of the wave-function near the ‘tunneling’ region
and directly observe the electron’s behavior in a classical
forbidden zone without using a tunneling hypothesis or
approximations.

To investigate the momentum distributions near the
tunneling zone, we set the ND ring’s radius close to the
postulated laser cycle averaged tunneling ‘radius’. In
a linearly polarized field, this is approximately Ip/|Et|,
where Ip is the ionization potential of the electron and
|Et| is the field strength at time t. For helium, with
the laser parameters used in our calculations, the tun-
neling radius is about 6 a.u. at the peak intensity of the
laser pulse. The same approximation gives a tunneling
radius for krypton which is about 8 a.u. Considering the
time dependent oscillation of the laser field, and that the
field strength decreases with larger ellipticity values, we
set the ND circle at 10 a.u for both helium and krypton
to collect the momentum information near the tunnel-
ing region. In Fig. 2, we show the scheme of the SENE
method.

In Fig. 3 we show cumulative exit momentum distri-
butions for helium and krypton through the laser pulse.
The exit momentum distributions are collected by the
NDs. In the distributions of helium atoms, along the px
axis, all distributions divide into two parts and form a
two-peak structure. To capture the dynamic motion of
an electron near the tunneling exit, we use the data val-
ues recorded by NDs in a time window with size T/8,
where T is the laser cycle period. There are approxi-
mately 250 time steps in each time window. Since the
CEP value is specified for each ionized electron, we will

FIG. 2: The circle of numerical detectors [21, 22] with radius
Rd is shown, as well as outgoing classical particle trajectories
that were initiated with the momentum values determined by
the detectors. The trajectories continue to be fully affected by
both laser action and ionic Coulomb attraction as the particles
propagate outward to actual detection.

FIG. 3: Rows from top to bottom: ε =0.2, 0.5. Columns from
left to right: cumulative initial momentum distributions in the
polarization (x-y) plane at NDs through whole laser pulse of
(1) helium, (2) krypton. The peak laser intensities used are
for helium 0.8 PW/cm2, and for krypton 0.12 PW/cm2.

use only zero CEP to demonstrate an electron’s motion.
For other CEPs, the time oscillation curves will simply
shift.

We plot the averaged exit momentum-distribution pa-
rameters in Fig. 4. In the plot, both time resolved
parameters of helium and krypton show a time depen-
dent oscillation. Although the oscillating amplitude of
krypton is much smaller than that of helium, the time-
dependent average momenta, p̄x and p̄y, of krypton still
have non-zero values and oscillate around zero. The time-
dependent oscillation of the average longitudinal momen-
tum confirms that the electron’s momentum near the
tunneling region is time dependent and should be de-
scribed in a dynamic way. Clearly, an electron’s motion
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FIG. 4: Time resolved values of p̄xt, p̄yt, T is one laser period.
The discrete step size is T/8. The width of the momentum
distribution in each time window is plotted as vertical error
bars. Columns from left to right: (1) helium, (2) krypton.
All single plots show the time dependent parameters’ changes
over the center two and half cycles of the laser pulse. We also
plot unit field oscillation in both x and y directions.

near the tunneling region is non-adiabatic and strongly
coupled with the laser field. In Fig. 4, we also plot the
unit field strengths.

However, these time oscillations of a single electron
cannot be observed in a lab now (nor in the foreseeable
future). For experimental observations, it’s meaningful
to describe the electron’s initial momentum in a cumu-
lative ensemble by including data from all times and all
CEPs.

So, we plot the cumulative σ(px) and σ(py) in Fig.
5. First, we notice that the standard deviations of py of
helium and krypton at ε < 0.5 are close to the values
predicted by the tunneling theory. The tunneling theory
[7, 8] predicts that the exit momentum component per-
pendicular to the polarization direction has a gaussian
distribution, which is centered at zero and has a stan-
dard deviation equal to

σtunnel(py) =

√
ω

2γ
, γ =

ω
√

2Ip(1 + ε2)

E0
(2)

Here, γ is the Keldysh parameter [30], and ω, I and ε are
the laser field’s frequency, peak intensity and ellipticity.
With a linearly polarized field, Eq. 2 gives standard de-
viation values of 0.24 a.u. for helium and 0.17 a.u. for
krypton. In Fig. 5, at ε < 0.5, σ(py) values of both
helium and krypton are close to the predicted values.

When the ellipticity increases, two pairs of numerical
curves of helium and krypton behave in a similar way.

FIG. 5: This figure shows how the cumulative σ(px) and σ(py)
change vs. ellipticities for helium and krypton atoms. In a
near-circularly polarized laser beam, two standard deviations
converge. We also compare our data of standard deviations
in longitudinal momentum of helium atoms to the prediction
made by the TIPIS model [16].

Standard deviations in px and py directions, σ(px) and
σ(py), will converge toward a single value when the el-
lipticity goes to 1. That is, in a circularly polarized
laser field, the exit momentum distribution is uniformly
distributed along a circle. The cumulative momenta
standard deviations mimic the behavior of E0x and E0y

when the ellipticity changes, which are proportional to√
1/(1 + ε2) and

√
ε2/(1 + ε2). That explains why σ(py)

is more sensitive to the ellipticity change.

The longitudinal momentum standard deviations of
krypton are much smaller than for helium at all ellip-
ticity values. Our longitudinal momentum standard de-
viations of krypton (green dash line) range from 0.3 to
0.22 a.u. This standard deviation range is in the range
of the prediction made by Sun et al. [18].

Surprisingly, our momentum standard deviations near
the tunneling region quantitatively agree with both
groups’ results. There is no controversy in our simu-
lations. Near-one and near-zero standard deviations co-
exist in our results.

In the view of the SENE method, the decrease of the
exit longitudinal momentum standard deviation is a pre-
dictable result. An outgoing wave packet will be accel-
erated and stretched in the direction of the laser field.
When the laser peak intensity drops from 0.8 PW/cm2 to
0.12 PW/cm2, a smaller average |px| value and a smaller
σ(px) are predictable results with the SENE method.
The actual conflicts come from overlooking the coupling
between the laser field and the ionized electron’s momen-
tum. In the backward processing, both groups assume
that an electron is ionized through adiabatic tunneling.
In the cumulative momentum distribution plots, due to
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a higher laser intensity, the separation between the two
peaks is larger for helium atoms. To cover the larger sep-
aration, the adiabatic hypothesis needs larger standard
deviations. In Fig. 5, the TIPIS model [16] predicts
standard deviations that are close to our data of helium
atoms. So, using a backward process, one can partially
match the physical truth of the longitudinal momenta.
However, such an adiabatic hypothesis misses the crucial
coupling between the laser and the ionized electron which
is easily handled by the SENE method.

In conclusion, in past research, the adiabatic tunnel-
ing theory has been a powerful theoretical tool to in-
terpret experimental data. In this report, we note that
using adiabatic assumptions in studying the longitudi-
nal momentum distributions of photo-ionized electrons
can lead to controversial conclusions. We show how the
SENE method can resolve controversies caused by a back-
ward processing method. Using the SENE method, we
retrieve the first quantitative evidence of dynamic mo-
tion of an electron near the tunneling region. Since the
SENE method can easily retrieve quantum wavefunction
information of an electron, it will be a valuable tool for ab
initio studies including both laser and ionic forces. In the
so-called tunneling zone, fascinating issues such as the
electron’s multidimensional motion and its dynamic de-
lay time must be the topics of future work. This research
is supported by the DOE grant DE-FG02-05ER15713.
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