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Tunneling of a quasibound state is a non-smooth process in the entangled many-body case. Us-
ing time-evolving block decimation, we show that repulsive (attractive) interactions speed up (slow
down) tunneling. While the escape time scales exponentially with small interactions, the maxi-
mization time of the von Neumann entanglement entropy between the remaining quasibound and
escaped atoms scales quadratically. Stronger interactions require higher order corrections. Entan-
glement entropy is maximized when about half the atoms have escaped.

Tunneling is one of the most pervasive concepts in
quantum mechanics and is essential to contexts as di-
verse as α-decay of nuclei [1, 2], vacuum states in quan-
tum cosmology [3] and chromodynamics [4], and photo-
synthesis [5]. Macroscopic quantum tunneling (MQT),
the aggregate tunneling behavior of a quantum many-
body wavefunction, has been demonstrated in many con-
densed matter systems [6, 7] and is one of the remarkable
features of Bose-Einstein Condensates (BECs), rang-
ing from Landau-Zener tunneling in tilted optical lat-
tices [8] to the AC and DC Josephson effects in double
wells [9, 10], as well as their quantum entangled gener-
alizations [11]. The original vision of quantum tunneling
was in fact the quantum escape or quasibound problem by
Gamow in 1928 [1] and Gurney and Condon in 1929 [2],
and recently the first mean-field or semiclassical observa-
tion of quantum escape has been made in Toronto [12].
However, with the rise of entanglement as a key perspec-
tive on quantum many-body physics, the advent of pow-
erful entangled dynamics matrix-product-state (MPS)
methods [13, 14], and the possibility of observing the
moment-to-moment time evolution of quasibound tun-
neling dynamics directly in the laboratory [12, 15–18], it
is the right time to revisit quantum escape. In this Let-
ter, we take advantage of the powerful new toolset for
quantum many-body simulations [14, 19] to show that
the many-body quantum tunneling problem differs in key
respects from our expectations from semiclassical and
other well-established approaches to tunneling. Specif-
ically, we use time-evolving block decimation (TEBD) to
follow lowly entangled matrix product states [13, 20] for
the quantum escape of a quasibound ultracold Bose gas
initially confined behind a potential barrier; open source
code at [21].

Whether between states in a double well [9, 22], in
Landau-Zener [23] and orbital angular momentum con-
texts [24], for quantum escape [25, 26], for nonlinear de
Broglie (soliton) tunneling in matter waves [27, 28] or
nonlinear optics [29–31], or even in variational parame-
ter space [32], MQT has up till now mainly been treated
under semiclassical approximations such as the instan-
ton approximation and JWKB, as well as the nonlin-

ear Schrodinger equation (NLS). Mathematical analogies
between NLS equations and the Gross-Pitaevskii equa-
tion are particularly strong [33], notably in the non-
linear optics community where advances in the under-
standing of coherent and partially incoherent solitons
[34–43] raise many questions regarding how many-body
quantum mechanics impacts nonlinear de Broglie tun-
neling, i.e. many-body effects cause fragmentation and
depletion of BEC’s, which can render mean-field inef-
fective. Beyond mean-field, semiclassical, and instanton
approaches, two time-evolving many-body studies have
been performed recently. First, an explicit comparison
between instanton and TEBD Bose-Hubbard based pre-
dictions has been performed for superfluid decay [44, 45],
establishing explicit numerical limits on the instanton ap-
proach; this method is nearly identical to ours but treats
discrete-to-discrete state or double-well type tunneling,
in this case between two rotational states on a ring.
Second, the quantum escape problem has been stud-
ied with the time-adaptive many-body method known
as multi-configurational time-dependent Hartree theory
for bosons [11, 46]; this work treated quantum deple-
tion but not von Neumann entropy and number fluctu-
ations. In contrast, our approach accesses a wide va-
riety of quantum measures to elucidate the underlying
many-body quantum features of quasibound escape dy-
namics, and shows the explicit convergence to mean-field
type dynamics. Such measures clarify when semiclassical
approaches are and are not applicable. They also show
that hiding in the semiclassical averaged picture are other
many-body features with radically different scalings: the
escape time tesc, i.e., the time at which the average num-
ber of remaining quasibound atoms falls to 1/e of its ini-
tial value, varies exponentially with interaction for only
a limited range near zero. We will show that accurately
describing the scaling of tesc and other many-body ob-
servables over many interaction strengths requires the
effect of higher order quantum corrections.

Consider a system of N bosons at zero temperature
in the canonical ensemble. To simulate such a system,
we can either invoke an explicit optical lattice of L sites,
deep enough for tight binding and single band approxi-
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mations to be valid; or we can simply choose a discretiza-
tion scheme. Either way the Bose Hubbard Hamiltonian
(BHH) is an appropriate model:

Ĥ = −J
L−1∑
i=1

(b̂†i+1b̂i + h.c.) +

L∑
i=1

[
U

2
n̂i(n̂i − 1̂) + V ext

i n̂i].

(1)
In Eq. (1), J is the energy of hopping and U determines
the on-site two-particle interactions. An external rectan-
gular potential barrier, of width w and height h, is given
by V ext

i . The field operator b̂†i (b̂i) creates (annihilates)

a boson at the ith site and n̂i ≡ b̂†i b̂i. We will work in
hopping units: energies are scaled to J and time t to
~/J . We use open boundary conditions, as convenient
for TEBD. TEBD is a superior method because it gives
us access to quintessential many-body quantities like en-
tanglement. Instanton methods offer another approach
towards calculating tunneling rates within a semiclassical
approximation [47], but are rapidly rendered inaccurate
for larger interaction strengths [48], whereas TEBD suf-
fers from no such limitations.

To describe the system from a mean-field perspective,
the discrete NLS (DNLS) may either be obtained via dis-
cretization of the NLS or from a mean-field approxima-
tion of the BHH. In the latter case, one can propagate
the field operator b̂i forward in time using the BHH in
the Heisenberg picture: i~∂tb̂i = [b̂i, Ĥ]. Assuming the
many-body state is a product of Glauber coherent states,
〈b̂†i b̂ib̂i〉 = ψ∗i ψiψi, where ψi ≡ 〈b̂i〉, leads to the DNLS:

i~ψ̇i = −J(ψi+1 + ψi−1) + g|ψi|2ψi + V ext
i ψi. (2)

In Eq. (2), the condensate order parameter, ψi, is normal-

ized to the number of atoms, N =
∑L

i=1 |ψi|2. Mean-field
simulations are performed using a fourth-order Runge-
Kutta adaptation of Eq. (2). The BHH approaches
the DNLS in the mean-field limit N → ∞, U → 0,
NU/J = const. We emphasize that both the BHH and
the DNLS are single band models, valid when the many-
body wavefunction covers many sites and has variations
larger than the lattice constant. A true continuum limit
is possible for NJ/L = const., N/L → 0 and J → ∞;
however, this would restrict us numerically to very small
numbers of atoms [49] and prevent us from approaching
the mean-field limit of NU = const., N →∞, U → 0; it
can also require different discretization schemes than the
BHH depending on the interaction strength and regime
of interest. We therefore restrict ourselves to the semi-
discrete regime appropriate to both the BHH and DNLS.

We initialize the many-body wavefunction via imagi-
nary time relaxation to trap the atoms in a quasibound
state behind the barrier as illustrated in Fig. 1. We set
V ext to height h = 0.05 and width wI , effectively reduc-
ing the system size. At t = 0, in real time, the barrier
is decreased to width w, where w is typically one to five
sites, such that the atoms can escape on a time scale
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FIG. 1. Initial Quasibound State. The many-body wave-
function for N = 20 with NU/J = +0.15 (blue shaded region,
points show actual TEBD results for the density average 〈n̂i〉)
is first localized to the left behind the barrier (red line, red
and pink shaded areas) via relaxation in imaginary time with
a barrier of height h and initial width wI . At t = 0 in real
time propagation the barrier is reduced to width w (solid red
line, red shaded area) so the now quasibound Bose gas can
commence macroscopic quantum tunneling. The hard wall at
the left and relatively small barrier area pushes the density
tail to partially extend to the right.
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FIG. 2. Many-Body Tunneling, and Calculation of Decay
Time. Barrier widths (a,d) w = 1, (b,e) w = 3 , and (c,f)
w = 5. Top row: average atom number per site. Bottom row:
number in well 〈n̂well〉 (magenta), number in barrier 〈n̂bar〉
(cyan), and escaped 〈n̂esc〉 (tan) atoms; the 1/e decay time
all ±0.1. All plots for NU/J = +0.30 with N = 20.

within reach of TEBD simulations. We choose L large
enough so that reflections from the box boundary at the
far right do not return to the barrier in simulation times
of interest: treflect � tesc. Further numeric procedure and
implementation details are given in supplemental mate-
rials [50]. Evolving in real time, we first make a coarse
observation of the dynamics of MQT in Fig. 2 by plotting
the average atom number in different regions for repulsive
interactions, in order to determine tesc. We find similar
results for attractive interactions, but with larger tesc.

How do many-body predictions compare to mean-field
ones? We define tMF

esc and tMB
esc as the mean-field and
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FIG. 3. Many-Body (MB) vs. Mean-Field (MF) Escape
Time Predictions. Solid lines: Repulsive (REP). Dashed
lines: Attractive (ATT). (a)-(b) Dependence of tMB

esc on bar-
rier area and atom number for (a) NU/J = ±0.15 and (b)
NU/J = ±0.30. (c) tMB

esc plateaus towards tMF
esc for 10 to 80

atoms as shown for NU/J = ±0.15 and w = 5. (d) De-
pletion for NU/J = ±0.30 and w = 5; attractive markers
semi-transparent for readability. Curves are a guide to the
eye, points represent actual data with error bars smaller than
data point in all panels. Panel (d) legend corresponds to
(a),(b), and (d).

many-body escape times, respectively. For fixed NU/J ,
w, and h, the DNLS gives the same result independent of
N and U ; tMB

esc → tMF
esc only in the large N small |U |mean-

field limit; and w2h determines the barrier area. Figure 3
illustrates our exploration of this parameter space. The
dynamics of MQT predicted by the DNLS and BHH dif-
fer strongly when N is small. For example, in Fig. 3(c)
for repulsive (attractive) interactions NU/J = +0.15
(NU/J = −0.15) and barrier width w = 5, the BHH pre-
dicts a decrease (increase) in tMB

esc , approaching a nearly
constant value for N & 20. This same trend is appar-
ent for various barrier areas, Fig. 3(a,b). In Fig. 3(d) we
also show the quantum depletion D, for NU/J = ±0.30,

w = 5, D ≡ 1 − (λ1)/(
∑L

m=1 λm) where {λm} are the

eigenvalues of the single particle density matrix 〈b̂†i b̂j〉,
and λ1 is the largest eigenvalue; larger D corresponds to
a more fragmented (less condensed) state. The largest
fragmentation for both attractive and repulsive interac-
tions occurs for N = 2. As N increases, depletion de-
creases monotonically, with N = 20 reaching D ≈ 0.10
(D ≈ 0.04) for attractive (repulsive) interactions. This
decreased fragmentation allows the DNLS to give accu-
rate predictions for tMB

esc for larger N .

Systematic error in TEBD [51] for tMB
esc results from

the Schmidt truncation (χ), the truncation in the on-
site Hilbert space dimension (d), and the time resolution
at which we write out data (δt). The hardest many-

Attractive

Repulsive

FIG. 4. Many-body Quantum Measures. (a) Nearly universal
curve for the entropy of entanglement vs. the average num-
ber of trapped atoms. Black line: No interaction. Darker
red/blue corresponds to higher |NU/J |. (b) Observables
demonstrate very different scaling with interaction. Points
show actual data (error bars smaller than points), while lines
are best fit curves. All plots treat N = 6 with 11 equally
spaced values of NU/J ∈ [−0.60, 0.60].

body measures to converge, such as the block entropy,
at χ = 35 have an error . 10−3 for N = 70, and were
checked up through χ = 55; due to small U and effec-
tive system size, much lower χ is required than usual in
TEBD. For up to N = 10 we have not truncated d, but
for larger N up to 80, we truncated attractive (repul-
sive) to d = 20 (d = 15). A lower truncation results in
decreased tMB

esc , e.g. by 10% for d = 5, NU/J = −0.1, and
N = 10, even though max(〈n̂〉) < 1, since more weight
is given to spread-out Fock states. The attractive BHH
requires much higher d than the repulsive BHH, since
U < 0 increases number fluctuations in high density re-
gions, i.e., behind the barrier at t = 0. In both cases, in
general we find on-site number fluctuations play a sur-
prisingly strong role in tunneling processes compared to
usual for TEBD. The BHH also has a number of sources
of systematic error, the most important of which is vir-
tual fluctuations to the second band; however, since we
compare single-band DNLS to single-band BHH this does
not effect our comparison. In general we expect fluctua-
tions to higher bands will speed up tunneling; therefore
our calculations may be taken as a lower bound for ex-
periments.

We explore the effect of interaction in Fig. 4 by exam-
ining observables for 11 equally spaced values of NU/J ∈
[−0.60, 0.60]. Of particular interest to MQT is the von
Neumann block entropy characterizing entanglement be-
tween the remaining quasibound atoms and the escaped
atoms, Sl ≡ −Tr(ρ̂l log ρ̂l), where ρ̂l is the reduced den-
sity matrix for the well plus barrier. The key features of
Sl are illustrated in a nearly universal curve in Fig. 4(a):
on the lower right side tunneling has not yet commenced.
Sl maximizes part way through the tunneling process in
the center of the curve, at Nl/N ' 1/2; and Sl then
decreases again to the left as the atoms finish tunneling
out.

Define tMB
s as the time at which Sl is maximized and

define tMB
f as the time at which the slope of the number
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fluctuations (dfl/dt) is largest before tMB
esc , where fl =

(〈N2
l 〉 − 〈Nl〉2)/〈Nl〉, Nl is the number of atoms to the

left of site l, and l is taken at the outer edge of the barrier;
See supplemental materials [50] for further discussion of
fluctuations. We find tMB

s , tMB
f , and tMB

esc increase with
decreasing U , as shown in Fig. 4(b). As NU/J decreases,
we approach the self-trapping regime, where escape times
become much longer than the lifetime of the system.
While tMB

esc increases smoothly as NU/J decreases, dfl/dt
is strongly influenced by change in NU/J , with a notice-
able increase nearNU/J ≈ −0.3, and a steady flattening-
out as we approach self-trapping interaction strength.
A best fit line for tMB

f covering all NU/J requires an
exponential of a second order polynomial, while an ex-
ponential fits well for −0.3 < NU/J < 0.3. In the
coarser measure tMB

esc , we find exponential scaling when
−0.4 < NU/J < 0.4; a third order polynomial in the
exponential is required to accurately capture the strong
interaction regimes, as shown in the fit in Fig. 4(b). We
find that tMB

s scales linearly only for−0.1 < NU/J < 0.1,
quadratically for −0.4 < NU/J < 0.4, and requires a cu-
bic polynomial fit to cover the entire interaction regime.
Results in Fig. 4 are for N = 6; we found similar results
for up to N = 20, although simulations are limited in the
large |U | regime.

Another experimental signature is the density-density

correlations, g
(2)
ij = 〈n̂in̂j〉 − 〈n̂i〉〈n̂j〉, extractable from

noise measurements [52, 53]; g(2) is zero in mean-field the-
ory. As customary, we subtract off the large diagonal ma-
trix elements of g(2) to view the underlying off-diagonal
structure. In Fig. 5(a)-(c) we show g(2) for N = 40,
NU/J = −0.015, and w = 2, dividing up the system to
observe correlations between the three physical regions:
trapped, under the barrier, and escaped. We initially
observe near-zero correlations everywhere except near
the many-body wavefunction peak. At t = 62 ≈ tMB

s ,
g(2) shows many negatively-correlated regions (g(2) < 0)
which are broken up by the potential barrier. In Fig. 5(d)
we also show quantum depletion increases with increas-
ing w, for NU/J = ±0.15 with N = 2. In comparison to
Fig. 3(d) (NU/J = ±0.30), D doesn’t become as large
for Fig. 5(d) (NU/J = ±0.15) because of the smaller
N |U |/J value. The growth in D emphasizes the many-
body nature of the escape process.

In conclusion, we have performed quantum many-body
simulations of the macroscopic quantum tunneling of
attractive and repulsive bosons using TEBD to time-
evolve the Bose-Hubbard Hamiltonian, treating the orig-
inal 1929 quasibound or quantum escape problem. Sim-
ilar to mean-field double-well tunneling [54, 55], we find
that repulsive (attractive) interactions speed up (slow
down) tunneling for the escape problem. We found
strong deviations from mean-field predictions and pro-
vided quantitative boundaries by which one can judge
the legitimacy of applying mean-field theory to this prob-
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FIG. 5. Time-dependence of Density-Density Correlations.
(a)-(c) g(2) shows correlations between trapped and escaped
atoms. The barrier, indicated by white lines, breaks up
negatively-correlated regions (red); shown are time slices at
(a) t = 0, (b) t = 62 ≈ ts, and (c) t = 125 ≈ tMB

esc . (d) Quan-
tum depletion grows rapidly for N = 2 with NU/J = ±0.15.
Solid lines: Repulsive. Dashed semi-transparent lines: At-
tractive. Curves are a guide to the eye, points represent actual
data (error bars smaller than points).

lem. Even a low average order moment like escape time
was shown to deviate from simple exponential scaling
for stronger interactions. Higher order quantum mea-
sures like entropy of entanglement between the quasi-
bound and escaped atoms, and the slope of number fluc-
tuations, reached a maximum at times which exhibited
scaling behaviors with interactions ranging from poly-
nomial, to exponential, to exponential of a polynomial,
showing tunneling dynamics are far richer in the quan-
tum many-body picture. Finally, our study shows that
many-body effects in macroscopic quantum tunneling can
be experimentally observed via number fluctuations and
density-density correlations as well as dependence of es-
cape time on interactions.
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