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Using two-photon Bragg spectroscopy, we study the energy of particle-like excitations in a strongly inter-
acting homogeneous Bose-Einstein condensate, and observe dramatic deviations from Bogoliubov theory. In
particular, at large scattering length a the shift of the excitation resonance from the free-particle energy changes
sign from positive to negative. For an excitation with wavenumber q, this sign change occurs at a ≈ 4/(πq), in
agreement with the Feynman energy relation and the static structure factor expressed in terms of the two-body
contact. For a & 3/q we also see a breakdown of this theory, and better agreement with calculations based on
the Wilson operator product expansion. Neither theory explains our observations across all interaction regimes,
inviting further theoretical efforts.
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Spectroscopy of elementary excitations in a many-body
system is one of the primary methods for probing the effects
of interactions and correlations in the ground state of the sys-
tem, which are at the heart of macroscopic phenomena such
as superfluidity [1, 2]. In ultracold atomic gases, two-photon
Bragg spectroscopy provides a measurement of the excita-
tion energy ~ω at a well defined wavenumber q [3–9]. For
a weakly interacting homogeneous Bose-Einstein condensate
(BEC), the excitation spectrum is given by the Bogoliubov
dispersion relation [10], with low-q phonon excitations and
high-q particle-like excitations. Predictions of the Bogoliubov
theory have been experimentally verified both in harmonically
trapped gases, invoking the local density approximation [4, 5],
and in homogeneous atomic BECs [9].

Much richer physics, including phenomena traditionally as-
sociated with superfluid liquid helium, such as the roton min-
imum in the excitation spectrum [11], is expected in strongly
interacting atomic BECs (for a recent review see [12]). The
strength of two-body interactions, characterised by the s-
wave scattering length a, can be enhanced by exploiting mag-
netic Feshbach resonances [13]. However, this also enhances
three-body inelastic collisions, making the experiments on
strongly interacting bulk BECs [6, 14–16] challenging and
still scarce [17]. A deviation from the Bogoliubov spectrum
was observed in Bragg spectroscopy of large-q excitations in a
harmonically trapped 85Rb BEC [6], and has inspired various
theoretical interpretations [6, 12, 18–22], with no consensus
or complete quantitative agreement with the experiments be-
ing reached so far.

In this Letter, we use Bragg spectroscopy to study the large-
q, particle-like excitations in a strongly interacting homoge-
neous 39K BEC, produced in an optical box trap [24]. Our
homogeneous system allows more direct comparisons with
theory, and we also explore stronger interactions than in pre-
vious experiments. We show that at large a the excitation-
energy shift from the free-particle dispersion relation strongly
deviates from the Bogoliubov theory and even changes sign
from positive to negative. For a . 3/q our measurements
are in excellent agreement with the calculation based on the
Feynman energy relation, with a static structure factor that ac-
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FIG. 1. (color online) Predictions for the excitation resonances. (a)
Interaction shift for particle-like excitations with a fixed wavenumber
q. The dashed and solid lines show the Bogoliubov and Feynman-Tan
predictions, respectively. (b) Sketches of the dispersion relations for
two different scattering lengths (solid lines, with a2 > a1), follow-
ing [23]. The dotted line shows the free-particle dispersion relation.

counts for short-range two-particle correlations. However, for
even stronger interactions we also observe a breakdown of this
approximation, and find better agreement with a recent predic-
tion [22] based on the Wilson operator product expansion.

In Bogoliubov theory, the excitation energy ~ω is given by

ω = ω0

√
1 +

2

q2ξ2
, (1)

where ω0 = ~q2/(2m) is the free-particle dispersion relation,
m the atom mass, ξ = 1/

√
8πna the healing length, and n the

BEC density. For particle-like excitations, with q � 1/ξ, the
Bogoliubov prediction for the interaction shift ∆ω = ω − ω0

is ∆ωB = 4π~na/m [see Fig. 1(a)]. This theory assumes√
na3 � 1. Moreover, it is valid only for q � 1/a, because

it does not consider the short-range two-particle correlations,
at distances r . a.

For
√
na3 � 1, the Feynman energy relation gives the

excitation resonance at ω = ω0/S(q), where S(q) is the
static structure factor. Considering short-range correlations,
for qξ � 1:

S(q) = 1 +
C

8n

(
1

q
− 4

πaq2

)
, (2)

whereC(n, a) is the two-body contact density, and the expres-
sion in the brackets reflects the two-body correlations at short



2

distances [22, 25]; this ‘factorisation’ of the effects of many-
body correlations (captured by C) and the short-distance two-
body physics was highlighted by Tan [26]. For

√
na3 � 1,

the contact density is C ≈ (4πna)2, and for our experimental
parameters |S(q) − 1| < 0.03, so 1/S(q) − 1 ≈ 1 − S(q).
This ‘Feynman-Tan’ (FT) approach thus gives the interaction
shift of the excitation resonance

∆ωFT =
4π~na
m

(
1− πqa

4

)
. (3)

For qa → 0, ∆ωFT reduces to ∆ωB, but for increasing a (at
fixed q) it back-bends and changes sign at a = 4/(πq) [see
Fig. 1(a)]. In Ref. [6] the largest value of a reached was 0.8/q
and back-bending was observed, but ∆ω remained positive.

Let us also consider the dispersion relation, ω(q) at fixed
a. The energy of the low-q phonons is above the free-particle
dispersion (∆ω > 0) [23, 27], while according to Eq. (3) the
energy of particle-like excitations with q > 4/(πa) is below
it (∆ω < 0); finally, for q → ∞ the quasiparticle energy
is expected to approach the free-particle dispersion from be-
low (∆ω → 0−) [22, 23]. As illustrated in Fig. 1(b), for a
large enough a the dispersion relation has an inflection point,
which is a precursor of the roton minimum that fully develops
only for extremely strong interactions [22, 23]. In Eq. (2) the
maximum in S(q) for fixed n and a, which is conceptually
associated with the roton [22, 28], occurs at q = 8/(πa), in-
dependently of n, and only for

√
na3 ∼ 1 this coincides with

the familiar result for liquid helium, qroton ∼ n1/3.
In our experiments the regime

√
na3 ∼ 1 is not reachable

due to significant losses on the timescale necessary to per-
form high-resolution Bragg spectroscopy. Nevertheless, we
reach the regime where interactions are strong enough to ob-
serve a dramatic departure from Bogoliubov theory and the
precursors of roton physics.

Our setup is described in Ref. [29]. We produce quasi-
pure homogeneous 39K BECs of N = (50 − 160) × 103

atoms in a cylindrical optical box trap of variable radius,
R = (15− 30) µm, and length, L = (30− 50) µm. The BEC
is produced in the lowest hyperfine state, which features a Fes-
hbach resonance centred at 402.70(3) G [30]. The condensed
fraction in our clouds is > 90% and we hold them in a trap of
depth ≈ kB × 20 nK. By varying N , L, and R, we vary n in
the range (0.2 − 2.0) × 1012 cm−3. The three-body loss rate
is∝ n2a4, so working at such low n is favourable for increas-
ing both qa and

√
na3. We prepare the BEC at a = 200 a0,

where a0 is the Bohr radius, and then ramp a in 50 ms to the
value at which we perform the Bragg spectroscopy. For each
n we limit a to values for which the particle loss during the
whole experiment is < 10%; note that in our trap the three-
body recombination does not lead to any observable heating.
By varying the angle between the Bragg laser beams we also
explore three different q values: 1.1, 1.7 and 2.0 krec, where
krec = 2π/λ and λ = 767 nm. For all our parameters we
stay in the regime of particle-like excitations, with qξ values
between 5 and 40.

In Fig. 2(a) we show an example of an absorption image
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FIG. 2. (color online) Bragg spectroscopy, for n ≈ 2.0×1012 cm−3,
q = 1.7 krec, and a ≈ 1000 a0. (a) Typical absorption image, taken
along the radial direction of the cylindrical box trap, after the 2-ms
Bragg pulse and 20 ms of time of flight. The spherical halo arises
from the collisions between the stationary and diffracted clouds;
these collisions do not change the centre of mass of the atomic distri-
bution. (b) Bragg spectrum. Diffracted fraction (DF) as a function of
the frequency difference between the two Bragg beams, referenced
to ω0, which was calibrated using a non-interacting cloud. The reso-
nance is determined from a Gaussian fit to the data (solid line).

taken after Bragg diffraction, and in Fig. 2(b) an example of
a Bragg spectrum used to determine the resonance shift ∆ω.
The diffracted fraction of atoms is determined from the centre
of mass of the atomic distribution [6, 8]. In all our measure-
ments we keep the maximal diffracted fraction to . 10%; this
should result in . 10% systematic errors in our interaction
frequency shifts [5, 31].

In Fig. 3(a) we plot ∆ω versus a for two different combi-
nations of the BEC density n and excitation wavenumber q.
In both cases we observe good agreement with the prediction
of Eq. (3), without any adjustable parameters; for the lower n
we reach higher a and clearly observe that ∆ω changes sign.

Defining a dimensionless interaction frequency shift

α ≡ mq

4π~n
∆ω , (4)

the FT prediction of Eq. (3) is recast as:

αFT = qa
(

1− π

4
qa
)
, (5)

which is a universal function of qa only; with the same nor-
malisation the Bogoliubov theory gives αB = qa. Note
that the normalisation in Eq. (4) also allows us to correct for
the small (±10%) density variations between measurements
taken with different values of a and the same nominal n. In
Fig. 3(b) we show measurements of α with three different
combinations of n and q, which all fall onto the same uni-
versal curve, in good agreement with the FT theory.

In Fig. 3(b), for our most strongly interacting samples qa ≈
2.5 and

√
na3 ≈ 0.05. In the final part of the paper we explore

even stronger interactions and observe that the FT theory also
breaks down. In Fig. 4(a) we show measurements of ∆ω with
n ≈ 0.2 × 1012 cm−3 and q = 2 krec, for which we explore
scattering lengths up to≈ 8×103 a0, corresponding to qa ≈ 7
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FIG. 3. (color online) Breakdown of the Bogoliubov approximation
and observation of negative frequency shifts. (a) ∆ω as a function of
a for n ≈ 2.0 × 1012 cm−3 and q = 1.1 krec (blue circles), and for
n ≈ 0.8×1012 cm−3 and q = 2 krec (orange diamonds). (b) Dimen-
sionless frequency shift α versus qa for three different combinations
of n and q. Solid lines in (a) and (b) show the FT predictions from
Eqs. (3) and (5), respectively, with no adjustable parameters. The
dashed lines show the corresponding Bogoliubov predictions. Verti-
cal error bars show statistical fitting errors and horizontal error bars
reflect the uncertainty in the position of the Feshbach resonance.

and
√
na3 ≈ 0.1. Here we observe a clear deviation from the

FT prediction.
Tuning a at fixed n and q simultaneously changes qa and√
na3, making it non-obvious which of the two dimension-

less interaction parameters is (primarily) responsible for the
breakdown of the FT theory. In an attempt to disentangle the
two effects, we collect data with many {n, q, a} combinations,
and group them into sets with (approximately) equal

√
na3,

but varying qa values. In Fig. 4(b) we plot α − αFT versus
qa, with different symbols corresponding to different

√
na3.

These measurements suggest that, at least for our range of pa-
rameters, the breakdown of the FT theory occurs for qa & 3,
independently of the value of

√
na3.

At qa & 3, the deviation of our data from the FT the-
ory is captured well by a recent calculation based on the
Wilson operator product expansion (OPE) [22]. Assuming
C = (4πna)2, and with the same normalisation as in Eq. (4),
αOPE = qa[2/(1 + (qa/2)2)− 1] (see also [27]); in Fig. 4(b)
the dashed black line shows αOPE − αFT.

This theory also allows for self-consistent inclusion of
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FIG. 4. (color online) Deviation from the Feynman-Tan prediction.
(a) Frequency shift versus a for n ≈ 0.2×1012 cm−3 and q = 2 krec.
The solid line shows the FT prediction. (b) Deviation of the dimen-
sionless frequency shift α from the FT theory as a function of qa, for
various values of

√
na3 (see the legend). The dashed line is the OPE

prediction with C = (4πna)2 and no adjustable parameters. The
dot-dashed line is the OPE prediction that also includes the LHY cor-
rection with

√
na3 = 0.093, corresponding to the open-circles data.

Inset: comparison of the FT (solid) and OPE (dashed) calculations
with the data at low qa.

beyond-mean-field corrections to C. Including the Lee-
Huang-Yang (LHY) correction [32–34], αOPE depends on
both qa and

√
na3; we show the LHY-corrected αOPE (dot-

dashed black line) only for our largest
√
na3, where it appears

to provide a slightly better agreement with the experiments,
but this observation is not conclusive (see also [15]). Note
that at this point the LHY correction to C is about a factor of
two, but beyond-LHY corrections, which additionally depend
on the van der Waals length, could also be significant and the
two effects could partially cancel [35, 36].

Finally, we note that while the OPE theory successfully de-
scribes our large-qa measurements, it does not agree with our
low-qa data, in particular because it predicts the zero-crossing
of ∆ω at qa = 2 instead of qa = 4/π; this is highlighted in
the inset of Fig. 4(b).

In conclusion, we have probed the quasiparticle excitations
in a strongly interacting homogeneous BEC, pushing the ex-
periments far beyond the regime of validity of the Bogoli-
ubov theory. For a range of interaction strengths, qa . 3,
our data can still be quantitatively explained in the framework
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of the Feynman energy relation, by taking into account the
short-range two-particle correlations in the spirit introduced
by Tan. For qa & 3 this theory also fails, pointing to the need
for more sophisticated theoretical approaches. One such ap-
proach, based on the Wilson operator product expansion, in-
deed accounts well for our observations at qa & 3, but not at
qa . 3. Providing a unified description of quasiparticle res-
onances in all interaction regimes thus remains a theoretical
challenge.
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Villetaneuse, France.

[1] P. Kapitza, Nature 141, 74 (1938).
[2] J. F. Allen and H. Jones, Nature 141, 243 (1938).
[3] M. Kozuma, L. Deng, E. W. Hagley, J. Wen, R. Lutwak,

K. Helmerson, S. L. Rolston, and W. D. Phillips, Phys. Rev.
Lett. 82, 871 (1999).

[4] D. M. Stamper-Kurn, A. P. Chikkatur, A. Görlitz, S. Inouye,
S. Gupta, D. E. Pritchard, and W. Ketterle, Phys. Rev. Lett. 83,
2876 (1999).

[5] J. Steinhauer, R. Ozeri, N. Katz, and N. Davidson, Phys. Phys.
Lett. 88, 120407 (2002).

[6] S. B. Papp, J. M. Pino, R. J. Wild, S. Ronen, C. E. Wieman,
D. S. Jin, and E. A. Cornell, Phys. Rev. Lett. 101, 135301
(2008).

[7] E. D. Kuhnle, H. Hu, X.-J. Liu, P. Dyke, M. Mark, P. D. Drum-
mond, P. Hannaford, and C. J. Vale, Phys. Rev. Lett. 105,
070402 (2010).

[8] S. Hoinka, M. Lingham, K. Fenech, H. Hu, C. J. Vale, J. E.
Drut, and S. Gandolfi, Phys. Rev. Lett. 110, 055305 (2013).

[9] I. Gotlibovych, T. F. Schmidutz, A. L. Gaunt, N. Navon, R. P.
Smith, and Z. Hadzibabic, Phys. Rev. A 89, 061604 (2014).

[10] N. N. Bogoliubov, J. Phys. (USSR) 11, 23 (1947).
[11] J. L. Yarnell, G. P. Arnold, P. J. Bendt, and E. C. Kerr, Phys.

Rev. 113, 1379 (1959).
[12] F. Chevy and C. Salomon, J. Phys. B: At. Mol. Opt. Phys. 49,

192001 (2016).
[13] C. Chin, R. Grimm, P. Julienne, and E. Tiesinga, Rev. Mod.

Phys. 82, 1225 (2010).
[14] N. Navon, S. Piatecki, K. Günter, B. Rem, T. C. Nguyen,

F. Chevy, W. Krauth, and C. Salomon, Phys. Rev. Lett. 107,
135301 (2011).

[15] R. J. Wild, P. Makotyn, J. M. Pino, E. A. Cornell, and D. S. Jin,
Phys. Rev. Lett. 108, 145305 (2012).

[16] P. Makotyn, C. E. Klauss, D. L. Goldberger, E. A. Cornell, and
D. S. Jin, Nat. Phys. 10, 116 (2014).

[17] This is in contrast to Fermi gases near Feshbach resonances,
and Bose and Fermi gases in optical lattices, where the regime
of strong correlations is readily reached experimentally.

[18] S. Ronen, J. Phys. B: At. Mol. Opt. Phys. 42, 055301 (2009).
[19] J. J. Kinnunen and M. J. Holland, New J. Phys. 11, 013030

(2009).
[20] R. Sarjonen, M. Saarela, and F. Mazzanti, J. Low Temp. Phys.

169, 400 (2012).
[21] C. E. Sahlberg, R. J. Ballagh, and C. W. Gardiner, Phys. Rev.

A 87, 043621 (2013).
[22] J. Hofmann and W. Zwerger, Phys. Rev. X 7, 011022 (2017).
[23] R. Rota, F. Tramonto, D. E. Galli, and S. Giorgini, Phys. Rev.

B 88, 214505 (2013).
[24] A. L. Gaunt, T. F. Schmidutz, I. Gotlibovych, R. P. Smith, and

Z. Hadzibabic, Phys. Rev. Lett. 110, 200406 (2013).
[25] L. Pitaevskii and S. Stringari, Bose–Einstein condensation and

superfluidity (Oxford University Press, Oxford, 2016).
[26] S. Tan, Annals of Physics 323, 2952 (2008).
[27] S. T. Beliaev, Sov. Phys. JETP 34, 299 (1958).
[28] J. Steinhauer, R. Ozeri, N. Katz, and N. Davidson, Phys. Rev.

A 72, 023608 (2005).
[29] C. Eigen, A. L. Gaunt, A. Suleymanzade, N. Navon, Z. Hadz-

ibabic, and R. P. Smith, Phys. Rev. X 6, 041058 (2016).
[30] R. J. Fletcher, R. Lopes, J. Man, N. Navon, R. P. Smith, M. W.

Zwierlein, and Z. Hadzibabic, Science 355, 377 (2017).
[31] For low a we have also verified this using Gross-Pitaevskii sim-

ulations.
[32] T. D. Lee and C. N. Yang, Phys. Rev. 105, 1119 (1957).
[33] T. D. Lee, K. Huang, and C. N. Yang, Phys. Rev. 106, 1135

(1957).
[34] R. Combescot, F. Alzetto, and X. Leyronas, Phys. Rev. A 79,

053640 (2009).
[35] E. Braaten and A. Nieto, Eur. Phys. J. B 11, 143 (1999).
[36] E. Braaten, H.-W. Hammer, and T. Mehen, Phys. Rev. Lett. 88,

040401 (2002).

mailto:rl531@cam.ac.uk
http://www.nature.com/nature/journal/v141/n3558/abs/141074a0.html
http://www.nature.com/physics/looking-back/superfluid2/superfluid2.pdf
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.82.871
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.82.871
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.83.2876
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.83.2876
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.88.120407
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.88.120407
http://dx.doi.org/10.1103/PhysRevLett.101.135301
http://dx.doi.org/10.1103/PhysRevLett.101.135301
http://dx.doi.org/10.1103/PhysRevLett.105.070402
http://dx.doi.org/10.1103/PhysRevLett.105.070402
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.110.055305
http://dx.doi.org/10.1103/PhysRevA.89.061604
http://ufn.ru/pdf/jphysussr/1947/11_1/3jphysussr19471101.pdf
http://dx.doi.org/10.1103/PhysRev.113.1379
http://dx.doi.org/10.1103/PhysRev.113.1379
http://stacks.iop.org/0953-4075/49/i=19/a=192001
http://stacks.iop.org/0953-4075/49/i=19/a=192001
http://dx.doi.org/10.1103/PhysRevLett.107.135301
http://dx.doi.org/10.1103/PhysRevLett.107.135301
http://dx.doi.org/10.1103/PhysRevLett.108.145305
http://dx.doi.org/10.1038/nphys2850
http://stacks.iop.org/0953-4075/42/i=5/a=055301
http://stacks.iop.org/1367-2630/11/i=1/a=013030
http://stacks.iop.org/1367-2630/11/i=1/a=013030
http://dx.doi.org/10.1007/s10909-012-0745-x
http://dx.doi.org/10.1007/s10909-012-0745-x
http://dx.doi.org/10.1103/PhysRevA.87.043621
http://dx.doi.org/10.1103/PhysRevA.87.043621
http://dx.doi.org/10.1103/PhysRevX.7.011022
http://dx.doi.org/10.1103/PhysRevB.88.214505
http://dx.doi.org/10.1103/PhysRevB.88.214505
http://dx.doi.org/10.1103/PhysRevLett.110.200406
http://cds.cern.ch/record/2143198
http://cds.cern.ch/record/2143198
http://dx.doi.org/10.1016/j.aop.2008.03.004
http://www.jetp.ac.ru/files/JETP_7_299.pdf
http://dx.doi.org/10.1103/PhysRevA.72.023608
http://dx.doi.org/10.1103/PhysRevA.72.023608
http://dx.doi.org/10.1103/PhysRevX.6.041058
http://dx.doi.org/10.1126/science.aai8195
http://dx.doi.org/10.1103/PhysRev.105.1119
http://dx.doi.org/10.1103/PhysRev.106.1135
http://dx.doi.org/10.1103/PhysRev.106.1135
http://dx.doi.org/10.1103/PhysRevA.79.053640
http://dx.doi.org/10.1103/PhysRevA.79.053640
http://dx.doi.org/10.1007/s100510050925
http://dx.doi.org/10.1103/PhysRevLett.88.040401
http://dx.doi.org/10.1103/PhysRevLett.88.040401

	 Quasiparticle energy in a strongly interacting homogeneous Bose-Einstein condensate 
	Abstract
	References


