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We classify line nodes in superconductors with strong spin-orbit interactions and time-reversal
symmetry, where the latter may include non-primitive translations in the magnetic Brillouin zone
to account for coexistence with antiferromagnetic order. We find four possible combinations of ir-
reducible representations of the order parameter on high symmetry planes, two of which allow for
line nodes in pseudo-spin triplet pairs and two that exclude conventional fully gapped pseudo-spin
singlet pairs. We show that the former can only be realized in the presence of band-sticking degen-
eracies, and verify their topological stability using arguments based on Clifford algebra extensions.
Our classification exhausts all possible symmetry protected line nodes in the presence of spin-orbit
coupling and a (generalized) time-reversal symmetry. Implications for existing non-symmorphic and
antiferromagnetic superconductors are discussed.

PACS numbers: 74.20.-z, 74.70.-b, 71.27.+a

Introduction:—The possibility of line-nodal odd-parity
superconductivity in the presence of spin-orbit interac-
tions has attracted recent attention [1–4]. Blount [5]
has argued that odd-parity superconductivity should be
free of nodal lines. Indeed, the vanishing of all three
pseudo-spin triplet components is improbable for general
points in the Brillouin zone, and line nodes may only
occur on high symmetry planes intersecting the Fermi
surface. The pseudo-spin components of the odd-parity
wave function form, however, an axial vector, and in sym-
morphic lattices its components parallel and perpendicu-
lar to the symmetry plane transform according to differ-
ent representations. This excludes a symmetry enforced
vanishing of all three pseudo-spin components on the en-
tire symmetry plane and only allows for point nodes.
The situation changes in the presence of non-

symmorphic space group symmetries. Non-trivial phase
factors, due to non-primitive translations, can conspire
in a way to exclude representations on high symme-
try planes and opens the possibility of nodal-line odd-
parity superconductors [6, 7]. A similar situation arises
in superconducting materials coexisting with antifer-
romagnetic (AF) order, where time-reversal symmetry
only exists in conjunction with non-primitive transla-
tions in the magnetic zone. In recent work Nomoto and
Ikeda [4] studied one example of coexisting order which
does not allow for nodal-line odd-parity superconductiv-
ity but also excludes conventional, fully gapped even-
parity order parameters. A systematic understanding of
the symmetry constraints which may lead to unconven-
tional nodal properties is, however, missing. This calls
for a general classification of nodal-line superconductors
in the presence of spin-orbit that takes into account gen-
eral non-symmorphic crystal structures and coexistence
with antiferromagnetic order.
Here, we give a full classification of possible repre-

sentations on high symmetry planes under such general
conditions. There are four combinations of irreducible

representations of the superconducting order parameter:
(1) symmorphic (cases that obey Blount’s theorem), (2)
non-symmorphic in space (allowing for odd-parity line
nodes), (3) non-symmorphic in both space and time (al-
lowing for even-parity line nodes in antiferromagnets),
and (4) non-symmorphic in time (allowing for odd-parity
and even-parity line nodes). That is, two of them allow
for line nodes in odd-parity superconductors and two ex-
clude conventional fully gapped even-parity pairing. The
most interesting scenario, with exotic behavior in even-
and odd-parity components protected by a mirror or glide
plane symmetry, appears in coexistence with antiferro-
magnetic order, and has not been discussed previously.
We derive the conditions under which each of the rep-
resentations apply, verify topological stability of the line
nodes, and discuss implications for existing materials.

Symmetries:—In systems with time-reversal (θ) and
inversion (I) symmetries, Kramer’s degeneracy of single-
particle states survives the presence of spin-orbit inter-
action. The notion of spin-singlet and spin-triplet super-
conductivity then generalizes to corresponding pseudo-
spin pairs formed out of the degenerate states ψ, θIψ,
Iψ, and θψ [8]. Pseudo spin-singlet and spin-triplet pairs
correspond to the even, respectively odd, parity combi-
nations [9]. On high symmetry points in the Brillouin
zone, even and odd parity pairs can be further charac-
terized according to their transformation behavior un-
der additional crystal symmetries. Line nodes may be
symmetry-enforced on high-symmetry planes intersect-
ing the Fermi surface. For a classification of nodal-line
superconductors, it therefore suffices to concentrate on
mirror symmetries σz which may, however, be realized in
combination with non-primitive translations,

Σ′
z ≡ (σz , t

′
σ), t

′
σ =











0 (mirror-plane)

t⊥ (mirror-plane∗)

t‖ (glide-plane)

(1)



2

ρ E Σz I ΣzI

+ 4 −4cd −2 2

− 4 4cd −2 −2

E Σz I ΣzI

Ag 1 1 1 1

Au 1 −1 −1 1

Bg 1 −1 1 −1

Bu 1 1 −1 −1

TABLE I: Left: Character table for representations P− of
anti-symmetrized Kronecker deltas induced by single-particle
representations. Here cd = 0, 1 corresponds to a Kramer’s
(0) and band-sticking (1) degeneracy on the symmetry plane.
Right: Character table for irreducible representations of the
Cooper-pair wave function on high symmetry planes.

Throughout this work, we denote space group elements
by (g, t) with g a point group operation and t a possi-
ble non-primitive translation, and we set the lattice con-
stants to unity. Eq. (1) is a mirror reflection for van-
ishing translation vector. In centrosymmetric crystals,
a non-primitive translation perpendicular to the symme-
try plane, t⊥ ≡ ez/2, implies the presence of a two-fold
screw axis IΣ′

z . Despite its non-primitive translation,
Σ′

z is a symmorphic operation as the translation can be
removed by redefinition of the origin. Therefore, we re-
fer to this symmetry as mirror∗ in the following. For a
non-primitive translation t‖ within the symmetry plane,
Eq. (1) is a (non-symmorphic) glide-plane operation. The
absence of some of the possible representations for the
order parameter on the basal plane (kz = 0) and/or the
Brillouin zone face (kz = π) then opens the possibility of
nodal-line superconductivity.
Magnetism generally lifts the Kramer’s degeneracy of

single-particle states. In the presence of antiferromag-
netic order, a generalized time reversal symmetry opera-
tion is preserved, which contains a non-primitive transla-
tion in the magnetic Brillouin zone. Lattice symmetries
may be affected in a similar fashion, and to account for
these effects we introduce the generalized symmetries

Θ ≡ (E, tθ)θ, I ≡ (I, ti), Σz ≡ (σz , tσ). (2)

Here E is the identity element of the point group, tθ

the non-primitive magnetic translation which vanishes in
the paramagnetic phase, and ti = 0 or tθ while tσ = t

′
σ

or t
′
σ + tθ. We next aim to identify the allowed order

parameter representations on symmetry planes kz = 0, π,
taking into account the constraints set by symmetries (2).
The latter are derived from anti-symmetrized products of
the irreducible single-particle representations [10–13], as
we discuss next.
Pair-representations:—Starting from representations

Γk of the “little” group of the symmetry planes, Gk =
{E ,Σz}, one can construct representations for the sym-
metry group of Cooper pairs. The latter reads Gk ∪
IGk = {E ,Σz, I, IΣz}, where for notational convenience
we introduced E ≡ (E, 0). Cooper pairs are constructed
from anti-symmetrized products of the single particle

ρ Kramer’s deg.

+ Ag + 2Au +Bu

− Bg + Au + 2Bu

ρ band sticking

+ Bg + 3Au

− Ag + 3Bu

TABLE II: Decompositions of Cooper-pair representations
(Πρ

cd
) into irreducible components summarized in Table I

(right). Here Kramer’s degeneracy and band-sticking refer
to cd = 0 and cd = 1, respectively.

wave functions with vanishing total momentum. For pair
representations one thus has to separate out the anti-
symmetric parts P− of the corresponding (Kronecker)
products of single particle representations. P− are de-
duced from their characters which can be calculated from
characters of the single particle representations [10, 11].
Applying the general recipe to our case we are left
with [12, 13]

χ(P−(m)) =χ(Γk(m))χ(Γk(ImI)), (3)

χ(P−(Im)) =− χ(Γk(ImIm)), (4)

where m ∈ Gk and the left hand side defines the charac-
ters of P− for the symmetry group of Cooper pairs. For
our purposes the single-particle representations Γk are
double-valued co-representations of the magnetic group
Gk = Gk + ΘIGk, which take into account spin-orbit
coupling and degeneracies due to a (generalized) time-
reversal symmetry. Following this procedure we find four
possible representations realized on the symmetry planes.
These are summarized in Table I (left) where the values
for ρ and cd depend on the translations tθ, ti, tσ. We note
that the first and third characters in this table formalize
that centrosymmetric crystals with (generalized) time-
reversal symmetry host four different pairs, one of which
is even- and three of which are odd-parity [14]. A short
calculation further shows [15] that ρ = e2ikzez ·(tσ−ti) =
±1 fixes the sign of the last character. In the following we
refer to the two resulting representations as Π±. We no-
tice that Π− e.g. describes for vanishing ti the Brillouin
zone face of a mirror∗ symmetry. On the basal plane, on
the other hand, Π+ always applies. Finally, the second
character in Table I fixes the mirror eigenvalues of the in-
duced representations. For reasons discussed below, we
refer to cases cd = 0, 1 as Kramer’s and band-sticking
degeneracies, respectively. If cd = 1 all four pairs share
the same mirror eigenvalue, while cd = 0 implies that two
out of the four pairs have opposite mirror eigenvalues. To
determine the conditions under which either of the two
values cd applies, one needs to specify the single-particle
co-representations Γk. Before doing so we first comment
on implications of the four representations.
Decomposition into their irreducible components (Ta-

ble I (right)) one arrives at Table II, which is a cen-
tral result. The four representations in this table give
an exhaustive classification of nodal-line superconduc-
tors in the presence of spin-orbit, and (generalized) time-
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reversal, inversion and mirror symmetries (2). Blount’s
theorem on the absence of nodal-line odd-parity pairing
holds whenever the Cooper pair belongs to one of the two
Kramer’s degenerate representations cd = 0, but may
be violated in the two cases of band sticking cd = 1.
Moreover, out of the two representations belonging to
each type of degeneracy, one excludes conventional sin-
glet pairing with a fully gapped order parameter from
Ag.
Kramer’s degeneracies and band sticking:—The second

character in Table I (left) can be expressed in terms of
the single-particle co-representation [15] χ(P−(Σz)) =
e−ik·(2tσ+σzti−ti)χ2 (Γk(Σz)), and to specify Γk one
needs to account for degeneracies induced by Θ. The
latter are detected by Herring’s criterion, and for cen-
trosymmetric crystals with (generalized) time-reversal
symmetry, one either encounters Kramer’s or band-
sticking degeneracies [15–17]. In the absence of spin-
orbit, the latter occur for each spin component, and it is
this fourfold degeneracy the name alludes to [11, 17, 18].
Both types of degeneracies are accounted for by pass-
ing from double-valued representations γk of the little
group to corresponding co-representations of the mag-
netic group Gk. That is, γk 7→ Γk ≡

( γk

γ̄k

)

where
γ̄k(m) = γ∗

k
((Iθ)−1m Iθ) for Kramer’s and γ̄k(m) =

γk(m) for band-sticking degeneracies [19]. One read-
ily verifies that co-representations of the former come in
pairs of opposite sign, i.e. χ (Γk(Σz)) = 0 independent
of translations tθ,ti,tσ. Representations of band-sticking
degeneracies, on the other hand, come in identical pairs,
i.e. χ(Γk(Σz)) = ±2ieik·(tσ+σztσ)/2 and χ(P−(Σz)) =
−4ρ, as summarized in Table I [15]. Finally, inspection
of Herring’s criterion gives cd as a function of the trans-
lations. For the convenience of the reader we here sum-
marize the two equations fixing representations Πρ

cd
[15],

(−1)cd = e2ikzez·(tθ+tσ−ti), (5)

ρ = e2ikzez·(tσ−ti). (6)

Eqs. (5), (6) are a central result and allow to identify the
pair representation from the translation vectors defining
the basic symmetries Eq. (2). Band sticking occurs for
vanishing ti on the Brillouin zone face of a mirror∗ sym-
metry in the absence of magnetic order, or a mirror sym-
metry with coexistent antiferromagnetic order tθ = t⊥.
We also notice that glide and mirror symmetries have
identical implications for the nodal structure. We also
verified [15] the topological stability of the encountered
line nodes using a Clifford algebra technique [3]. There,
we show that topological protection arises under the con-
ditions of Eq. (5) which indicate band sticking, and al-
lows us to extend our results to more general conditions
such as pairing of non-degenerate states in multi-band
systems.
Applications:—Our results are summarized in Ta-

ble III. On the basal plane the absence of non-trivial

tθ|(tσ−ti) pair-representation implications

T|T Π+

0 = Ag+2Au+Bu “symmorphic behavior”

T|t⊥ Π−
1 = Ag + 3Bu “odd-parity line nodes”

t⊥|t⊥ Π−
0 = Bg+Au+2Bu “nodal even-parity SC”

t⊥|T Π+

1 = Bg + 3Au “odd-parity line nodes”
& “nodal even-parity SC”

TABLE III: Summary of results where T = {0, t‖} refers
to translation vectors within the mirror plane and t⊥ to a
non-vanishing perpendicular component. Here “symmorphic
behavior” refers to the absence of line nodes in odd-parity su-
perconductors (Blount’s theorem) and the possibility of con-
ventional fully gapped singlet pairing, and “nodal even-parity
SC” to the impossibility of the latter. Entry 2 is realized for
UPt3, NaxCoO2, Li2Pt3B, and CrAs, entry 3 for UPd2Al3
and UNi2Al3, and entry 4 for UPt3 in the AF phase.

phase factors associated with non-primitive translations
implies symmorphic behavior of representation Π+

0 (first
entry in Table III). The latter is characterized by the va-
lidity of Blount’s theorem, i.e. the absence of odd-parity
nodal-line superconductors, and possibility of conven-
tional fully gapped singlet pairing. Interesting behavior
can be expected on the Brillouin zone face where, de-
pending on the symmetries encoded in the translations
tθ, ti, tσ, all four cases can be realized. The second en-
try in Table III, representation Π−

1 , has been previously
discussed in Refs. [6, 7] and is here generalized to include
glide plane symmetries [20] and coexistence with antifer-
romagnetic order. A scenario summarized by represen-
tation Π−

0 , third entry in the table, has recently been
studied by Nomoto and Ikeda [4]. Finally, representation
Π+

1 , given in the fourth entry, has to our knowledge not
been discussed before.
Table IV lists a number of non-symmorphic and an-

tiferromagnetic superconductors with their space group
symmetry, non-symmorphic group operations (GO), the
experimentally indicated nodal structure (Node) and pair
representation (Rep) obtained from our analysis. As we
discuss next, for several of these examples the observed
non-symmorphic behavior is in agreement with the indi-
cated pair representations [15].
As pointed out in several recent works [1, 2, 6, 7], the

pair representation Π−
1 may be realized in UPt3 where

the Fermi surface intersects the symmetry plane kz = π
of a mirror∗ symmetry Σz = (σz , ez/2). As discussed in
Ref. 15, the same may occur for NaxCoO2, Li2Pt3B, and
CrAs. This is readily verified from Eqs. (5), (6) noting
that tθ, ti = 0 and tσ = ez/2. Our above analysis fur-
ther shows that the resulting Au line node for UPt3 also
persists in the presence of weak antiferromagnetic order
along the hexagonal a-axis, tθ = ta = (

√
3ex−ey)/2 [21].

Indeed, translation vectors defining pair symmetries on
the Brillouin zone face kz = π are tσ = tz + ta and
ti = ta [22, 23]. Inserting these vectors into Eqs. (5),
(6) one readily verifies that the representation Π−

1 also
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Space Group GO Node Rep

UPt3 P63/mmc S,G line Π−
1 (Π+

1 )

NaxCoO2 P63/mmc S,G line Π−
1

Li2Pt3B P4132 S,I line Π−
1

UBe13 Fm3̄c G point Π+

0

CrAs Pnma S,G,H line Π−
1

MnP Pnma S,G,H ? Π−
1

UPd2Al3 P6/mmm AF line Π−
0

UNi2Al3 P6/mmm AF line Π−
0

TABLE IV: Properties of non-symmorphic (first six entries)
and antiferromagnetic superconductors (last two entries). For
GO (group operations), S indicates a screw axis, G a glide
plane, I a lack of inversion [15], H a helical magnet, and
AF non-symmorphicity induced by antiferromagnetism. Node
means the experimentally known nodal structure (line, point,
or ? for unknown), and Rep refers to the pair representation
obtained from Eqs. (5), (6). The parenthesis for UPt3 for Rep
indicates an additional possibility due to AF order.

applies in the presence of the antiferromagnetic order.
Moreover, symmetry planes Σx = (σx, tz + ta) and
Σy = (σy , ta) lead to interesting behavior on the AF
Brillouin zone faces kx = π/

√
3 and ky = π. With

tθ = ti = ta and tσ = tz + ta, respectively tσ = ta, one
identifies with the help of Eqs. (5), (6) replacing as well
kz by kx and ky, respectively, the pair representation Π+

1

on both zone faces. Since Fermi surfaces intersect both
of these two zone faces, this opens up the possibility for
Bu line nodes for AF UPt3 and also implies the absence
of conventional fully gapped even-parity pairing.

UPd2Al3 provides a further interesting example, as re-
cently discussed in Ref. [4]. The Fermi surface intersects
the symmetry plane kz = π of a mirror σz symmetry. For
antiferromagnetic order along the c-axis and orientation
of the moments within the basal plane, the translations
are tθ = ez/2, tσ = ez/2 and ti = 0. From Eqs. (5), (6)
one readily finds the pair representation Π−

0 , implying
the absence of conventional fully gapped s-wave super-
conductivity and consistency with Blount’s theorem [4].
For magnetic moments oriented along the c-axis, on the
other hand, tσ = 0 while the other translations are un-
changed. A brief glance at Eqs. (5), (6) then shows that
the pair representation on the Brillouin zone face is Π+

1

in this case. The latter allows for odd parity line nodes,
while the conclusion on the absence of conventional fully
gapped s-wave superconductivity is unaltered. The same
considerations apply for UNi2Al3 for the c-axis zone face,
since the AF wave vector along c is the same as UPd2Al3.

Summary and discussion:— We have studied Cooper
pair representations for superconductors with spin-orbit
and magnetic order. We have shown that on high sym-
metry planes there exist four possible representations.
Two of these provide counter examples to Blount’s the-

orem, allowing for nodal-line odd-parity superconduc-
tivity, and two exclude conventional fully gapped even-
parity pairing. The Au line node has been previously
discussed [6, 7], and the Bu line node has to our knowl-
edge not been studied before. The latter can be read-
ily understood noting that the degenerate states form-
ing pseudo-spin pairs, ψ, θIψ, Iψ, and θψ, all have the
same mirror eigenvalue [24]. We provided simple formu-
las which allow to identify the pair representation from
the translation vectors tθ,ti,tσ of the (generalized) sym-
metries Eq. (2). We have illustrated how a straightfor-
ward application of the results gives interesting insights
into the unconventional nodal structure of superconduc-
tors UPt3 and UPd2Al3 (with other examples shown in
Table IV that are discussed more in Ref. 15). Given
the simplicity of Eqs. (5), (6), we hope that they will
prove useful in our understanding of known and yet to
be discovered unconventional superconductors. Finally,
we have verified topological stability of the encountered
line nodes of odd parity superconductors. Due to band
degeneracies along symmetry lines on the zone face in
the non-symmorphic case, these nodes can form nodal
loops [1, 2, 20], which implies a topological phase tran-
sition once the ratio of the superconducting gap to the
spin-orbit splitting of the bands exceeds a critical value.
Consequences for possible topological surface states is an
interesting question open for future investigation.
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