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We derive a number of exact relations between response functions of holomorphic, chiral fractional
quantum Hall states and their particle-hole (PH) conjugates. These exact relations allow one to
calculate the Hall conductivity, Hall viscosity, various Berry phases, and the static structure factor
of PH-conjugate states from the corresponding properties of the original states. These relations
establish a precise duality between chiral quantum Hall states and their PH-conjugates. The key
ingredient in the proof of the relations is a generalization of Girvin’s construction of PH-conjugate
states to inhomogeneous magnetic field and curvature. Finally, we make several non-trivial checks
of the relations, including for the Jain states and their PH-conjugates.

Introduction. Particle-hole (PH) transformation for
fractional quantum Hall (FQH) states was introduced by
Girvin [1]. This transformation relates a FQH state at
filling fraction v to a FQH state at filling fraction 1—v. In
the absence of Landau level mixing the projected lowest
Landau level (LLL) Hamiltonian is PH-symmetric and,
therefore, two states related by a PH transformation have
the same energy (up to a shift in the chemical potential).
Despite the physical clarity of PH-symmetry, the PH-
transformed wave functions look quite complicated and
are difficult to work with. PH-transformed states con-
tain a different number of particles, have different trans-
port properties and different topological order. In this
Letter we will explain that all of the information about
PH-transformed state is encoded in the original state,
so that both states are a different representation for es-
sentially the same physics. For this reason we feel it is
more appropriate to refer to the PH-transformation as a
particle-hole duality (PHD).

Recent years have also brought the rise of interest in
the role of PHD in the problem of the half-filled Landau
level. To resolve the issue of the apparent absence of the
PH-invariance in the Halperin-Lee-Read [2] theory, Son
has proposed a manifestly PH-invariant effective theory
of composite fermions with = Berry phase around the
composite Fermi surface [3]. This theory can successfully
be used to describe Jain states at fillings close to v = 1/2
and a PH-invariant (or self-dual) version of the Pfaffian
state [3, 4], which is a viable candidate for the observed
v = 5/2 plateau [5].

PH-transformation, as defined by Girvin [1], works in
flat space and homogeneous magnetic field. It was re-
cently appreciated that placing a FQH state in inhomo-
geneous background magnetic field and curved geometry
allows one to extract considerable information about the
flat space properties of the state [6-25]. For example,
the projected static structure factor (SSF) [26] in lead-
ing and sub-leading order in momentum, and long-wave
corrections to Hall conductivity and Hall viscosity can be

calculated from the properties that become apparent in
curved space [11, 19, 27-29]. Integer quantum Hall states
in curved geometry are available in (synthetic) photonic
systems [30].

In this Letter, we will use the approach of [9, 19] to
extend Girvin’s construction to inhomogeneous magnetic
field and curved geometry. Next, we will derive several
exact relations between Hall conductivity, Hall viscosity,
Berry phases, and the SSF of the holomorphic, chiral
FQH states and their PH-duals. These relations establish
the PHD quantitatively and show that properties of the
PH-dual state are completely determined by the original
state. The duality is non-trivial since the calculations
can be easily done before the PH-transformation, but
are difficult to do after.

Under certain assumptions, the long-wave corrections
to Hall conductivity, Hall viscosity and the SSF are de-
termined by topological quantum numbers [11, 19, 20,
27, 28]: filling fraction v, shift S = 25 [6], chiral cen-
tral charge c_ [31] , and the orbital spin variance var(s)
[14, 16]. We will explain how the topological quan-
tum numbers transform under the PHD and prove that
the aforementioned long-wave corrections are still deter-
mined by the (transformed) topological quantum num-
bers, albeit via different relations. We will check the
derived relations against the explicit computation of the
corresponding quantities for Jain states done in Son’s
theory of composite fermions and find complete agree-
ment.

FQH states in inhomogeneous background. We start
with a brief review of the construction [9, 19, 20] of a LLL
FQH state in inhomogeneous magnetic field and curva-
ture. Consider a holomorphic FQH state ¥, ({£}), where
{&} = &,..., &N denotes the collection of particle posi-
tions on the plane in complex coordinates £ = x + y.
We will assume that the magnetic field B is inhomoge-
neous and the background geometry is curved. Then the
unnormalized wavefunction ¥, ({¢}) takes the following



form [9, 19]

U, ({€)) = fu({€})ed T Q&) (1)

where f,({¢}) is holomorphic in &;, and Q is the magnetic
potential [32] defined by

A,Q=-2B, (2)

where A, is the Laplace operator for the metric g;;.
Throughout the Letter we will fix the coordinates so
that g;; = \/gaij. In these coordinates (also known
as the “conformal gauge”) the Laplacian is given by
Ay = %@85,. When the magnetic field is homogeneous,
but the space is curved, the magnetic potential is given
by

K

where K is the Kéhler potential satisfying 0.0:K = /g,
and ¢ = B~1/2 is the magnetic length. It is of crucial im-
portance that f,({¢}) does not depend on Q or the metric
/9. This will not be the case for PH-dual states. Such
states comprise a proper subset of chiral FQH states, i.e.
FQH states with fully chiral effective edge theories [33].

The central object of interest is the logarithm of the
normalization factor

am#/%m&&%ﬂmﬁm (4)

where [d¢] = d?&; - - - d?*¢n with d?¢ = dxdy, and W =
Q +log /g. We assume that for constant magnetic field
and flat space, when W = —|z|2/2/2, the state is normal-
ized and Z, = 1. It is not hard to see that log Z,[W] is
the generating functional of the density correlation func-
tions [19]

1 Slog Z,[W]
Vg IW(C)

where p, () = % Efvz“l d(¢ — &) is the density operator,
and N, is the number of particles in the state ¥,. In
writing (p,) we will always implicitly assume that the
expectation value is taken in the state with the filling
factor v.

The second variation produces the connected two-point
function [19]

(v (Q)) = (Wulpu (OW0) = )
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where (p,(Q)py (¢"))e = (pu(Q)pu(C)) = (pu(O)){pn(())-
The static structure factor (SSF) is defined as the Fourier
transform (¢ is the dimensionless momentum)

<pu(<)pu(CJ)>c (pu(€)), (6)

50(@) = ~{pu(@)pu (—))e (7)
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where p, = v/(27(?) is the mean electron density in the
homogeneous limit.

It follows from (2) that in flat space, derivatives w.r.t.
W and B can be traded with each other. Going to mo-
mentum space we recover [19]

P 2n0(p(q))  ¢*of(q)
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where we used the Stieda formula 6{(p,)/6B = o [34],
and the DC Hall conductance o (0) = v/2.

We will also need to know how the electron density
depends on the spatial curvature. This dependence is
captured by the function 7,(q) = 226(p,)/6R [19]. In
general, 7, (q) has the following momentum expansion

S b
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where the constant b is an a priori non-universal param-
eter. However in the LLL it is determined by the topo-
logical quantum numbers [11]

¢
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where ¢ = ¢ — 12vvar(s). It is also known to control

the Berry curvature on the moduli space of higher genus
surfaces [18]. Note that the kinematic Hall viscosity [35]
follows from the zero momentum limit of the curvature
response 72 /p, = n,(0) [20]. At the same time using
the expression for the scalar curvature R = —A, log /g,
and the general relation, valid for any metric-independent
operator O [19]
2 2
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it is possible to show that [19]
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These relations imply
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This relation, together with Eq.(10), was derived for the
Laughlin states in [19], and conjectured to hold for states
of the form (1) with var(s) = 0 in [20]. We conjecture
that it holds generally for chiral FQH states.

Finally, combining (8) and (12) we establish an exact
relation between Hall conductivity and 7, (q)

allgg 1
ol (0)  1+4¢%/2

Relations (8), (12) and (14) hold to all orders in ¢, under
the assumption of the absence of Landau level mixing

(@®m(a) +1) . (14)



and long-range interactions. Together with (10) these
relations imply that first 3 terms in the momentum ex-
pansion of ¢(g) and s,(q) are completely determined
by the topological quantum numbers.

Particle-hole transformation in inhomogeneous back-
ground. Following Girvin [1], we define U;_,({z}) as a
state of holes at filling v, which, when viewed as a state
of electrons, has filling 1 — v. Let z1,..., 2z be the co-
ordinates of electrons and &;,...,&y be the coordinates
of holes. Then the PH dual state is defined as

v () = | S [l e,

(15)
|
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where U, ({£}) is given by (1) and ¥, is the v = 1 state.
The overall factor is required to ensure that the PH-dual
state is normalized to 1 in constant magnetic field and
flat space. A defining property of the PH transformation
is that it is an involution

Ui-a-»({€}) = 20 ({E}).- (16)

Property (16) is ensured by the following identity. First,
we define an n-particle reduced density matrix [36]
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For n = 1, this density matrix is a projector to the LLL satisfying

v, (6D = [P (e DTED. (18)

Eq. (16) follows by applying PH conjugation to W;_, and expressing the resulting convolution integral for Wy_(;_,
in terms of (18). We make extensive use of the following formula relating the 2-particle reduced density matrices

between PH-dual states [37]

P, (61,660, 60)= PO(Er, 6 61,6) + PP (61,6361, 8) + 3PV (603 )P (€0:60) + L P60 6P (61:62)

S EN &) — o (€)) (pu(6). (19)

Integrating over position & reduces this to a simple for-
mula relating the electron density (in inhomogeneous
background)

{py) + (p1—v) = {p1). (20)

Equations (19) and (20) reveal the PHD, and are the
central results of the present Letter. Next we will discuss
the physical consequences of the duality.

Particle-hole duality. The Hall conductivity and cur-
vature response in the PH-dual state can be found using
(20). Taking a derivative w.r.t. the magnetic field B(q),
and applying the Stfeda formula we obtain an exact re-
lation between the Hall conductivities

.l (q) + o1, (q) = o1 (q). (21)
Similarly we find
viw(q) + (L —v)m—v(q) = m(q). (22)

These are exact relations connecting the linear re-
sponse functions of PH conjugate pair states, and hold

for all LLL wave functions connected by (15). They are
new results of the present Letter.

Next, we turn to the normalization factor. It follows
directly from the definition of the reduced density matrix
and the reproducing formula (18), as well as the definition
of the generating functional (4) that

Zl—u
Zy,

=2 = logZ_,—logZ,=logZ, (23)
where we have dropped the argument of Z, for brevity.
Eq.(23) is an ezact relation between the generating func-
tionals for a pair of PH-dual states. Eq.(23) clearly il-
lustrates the duality, and is a new result of the present
Letter.

Assuming now that ¥, has the form (1), variation of
log 21, over W((, () is given by

%@) log 21, = {p1) + (p) = (p1-) +2(ps) . (24)

We emphasize that since (24) does not have the same
form as (5), the wavefunction ¥;_, does not have the



form (1). More precisely, we see that f1_, has to depend
on W. In other words, the dual states couple differently
to inhomogeneous magnetic field. It appears that the
condition for f, to be independent of W has to do with
the chirality of a state [38]. For instance, all conformal
block trial states share this property. This complication
indicates that identity (23) is not sufficient to extract
all of the observables in a PH-dual state in terms of the
observables in the original state, because the relation-
ship between the observables and variations of log Z_,,
is more complicated for Wq_, states.

Now we will derive an analogue of (8) for the dual
states. By definition, the two-point density correlation
function is related to the 2-particle density matrix via

(pu(Q)pu () = (pu())S(¢ = ¢) + 2P (¢, ¢3¢, () -

In the translation-invariant limit, the one-particle den-
sity matrix for the v state is known to be [36]

PU(C; () = py eSS /21128 (25)

In this limit, Eq. (19) then becomes

p1—2py
(P1-0(O)p1-(C"))e = (P (C)pw (</)>C+T<
(26)
Taking the Fourier transform, we find a beautiful exact
relation between the projected static structure factors
3, = s, — 51 for a pair of PH-dual states [39)

pv5u(q) = p1-v51-0(q) . (27)

This relation is another novel result of the Letter. Eq.
(27) also follows from the relation between the pair-
correlation functions [40] for the dual states [41]. We
stress here that (27) requires only holomorphicity of the
wave function.

Now we are in position to relate the Hall conductivity
to the SSF of the PH-dual state

A0 = oL O (sl =5ule). 29

The simplest way to obtain (28) is to use (21) and (27),
and assume (8).

Next we will derive an analogue of (12) for PH-dual
states. Using (21), (22) and (14) we find

q*/2

- m((fm—u((ﬂ +1).  (29)

= s1(q)

Excluding s1_,(q) from (28)-(29) we come to a surprising
conclusion — the relation between oL (q) and n1_,(q) is
precisely the same as before the PH-transformation (14),
up to replacing v by 1 — v. Eq. (14) is thus invariant
under PH transformation.

p1(€)p1(<))e -

Berry curvature. Next we turn to the dependence of
the PH-dual states on parameters such as adiabatically
varying fluxes of magnetic field or the modular parameter
of a torus 7. Denote any of these parameters in complex
coordinates as x and . Berry curvature can be computed
under the assumption that the state ¥, is holomorphic
in the coordinates on the parameter space, except for the
real-analytic normalization factor. The normalized states
have the form [16, 18, 42]

1
- v,
V2 |z, T

Then the holomorphic component of the Berry connec-
tion is determined entirely by the normalization factor

v, ({€.€}2,2) = ({&.&h2) . (30)

Ay = Z<¢v|az|wu> = %896 log Z,, (31)

which follows by using the identity 0, (i,|¥,) = 0 to
trade derivatives of W, for derivatives of Z,. Thus, for
such holomorphic states the Berry curvature is a Kéhler
form with the Kahler potential ¢/, = log Z,,, and is given
by

Q, = % (0,0:U,) dz A dz . (32)

This structure is nearly preserved for the PH-dual state.
A straightforward calculation shows that the Kéhler po-
tential is Uy, = log(Z1/2,), which is not the logarithm
of the normalization as before. Thus, in contrast to the
formula (23), the Berry curvature obeys

Q + Q= Q. (33)

PHD and Chern-Simons terms. The first few terms
in the long wave expansion of o/ (¢), s, (q) and 1, (q) are
determined by the topological quantum numbers, which
appear as the coefficients of the Chern-Simons terms in
the effective action [11, 19, 27].

The Chern-Simons part of the effective action is given
by [14, 16]

Wészﬁ/(A—i—Ew)d(A—i—Ew) —%%/wdw, (34)

where ¢ = ¢_ — 12vvar(s) and other coefficients are the
topological quantum numbers discussed in the introduc-
tion. We have also introduced w,, — a spatial part of the
spin connection satisfying 0w — dowy = %\/ﬁR This ef-
fective action encodes the linear response functions. No-
tably, the Hall conductance, shift, and the Hall viscosity,
averaged over the sample, are given by

v IN — N¢ H S

H v _
= — S = = —pPv
O.l/ 27T ) X/2 ) TII/ 2p + 2

| o

X

A 3
(35)
where A and y are respectively the area and the Euler
characteristic of the sample, N is the number of electrons

>~



and Ny is the total magnetic flux in units of the flux
quantum. When a FQH state is constructed as a single
conformal block in a conformal field theory [16, 43] ¢ =
c_. However, in general (and notably for Jain states)
var(s) does not vanish [14].

The action of PH-transformation on the Chern-Simons
part of the effective action is

Wes + Wes” = Wes - (36)

This can be seen as a consequence of the formula for the
Berry curvature (33) following the arguments of [16]. In
addition to v"H = 1 — v it implies

spr L2V sy — Y (ﬂ + Var(s))

1-v v—1\4(1-v)
(37)
PHD also transforms the chiral central charge according
to cPH =1 —c_, and ePH = PH — 120 Hyar(s)PH,

Curiously, if the initial state had var(s) = 0, then
var(s)PH £ 0, unless S = 1.

As another example we provide an explicit formula for
the first two terms in the long-wave expansion of the
projected SSF of a PH-dual state

v(§—=1) , (—=6b+5v—3vS)
S(1— 1) 48(1— v) ¢ (38)

glfu(Q) =

where b is given by (10) and all of the topological quan-
tum numbers are known for a large variety of states [14].
Eq. (38) follows from using (13) in (27), and is another
new result of the present Letter. For example, it can
be readily used to determine the projected SSF for the
v = L gstates, related to the Laughlin states by the
PHD. Note that all of the quantum numbers are taken
from the state at filling v. We are not aware of this type
of general result in the literature.

Finally, we comment on the topological quantum num-
bers for a self-dual state which satisfies 2, = £4_,. This
state was discussed by Son [3] and is known as the PH-
Pfaffian. We find that it must have v = 1/2, § = 1,
c— =1/2 and var(s) = 0.

Jain states. We apply our relations to the PH-duals
of v = ¥ Jain states with the relevant topological

2N+1 i
quantum numbers given by

N(N2-1)

S=N+2
e b

c. =N, wvvar(s)= (39)

Then the projected SSF of the PH-dual state is given by

_N 4

N*4+2N3 —2N2 2N
g+ 6

18(N +1) ¢+

(40)

To the best of our knowledge (40) is a new result.
Hall conductivity of Jain’s state at the filling factor
v= WNH and its PH-dual state at the filling factor (1 —

_Nt1
v) = 2N+1

can be calculated exactly, in the large N limit

using the Dirac composite fermion theory and the results
of [44]. In the regime z = ¢(2N + 1) ~ 1 [45] the result is

2 2 2zJ2(z)
. (AN +2)% — » )(8N+ 2l ) "
v 647 (2N + 1)5 ’

(AN +2)2 - 2%) (8N + 8 — 2220
64 (2N + 1)°

) . (42)

o, (q) =

where J,(z) is the Bessel function. The correction to
this is order O(N~%). We have also assumed absence of
long-range interactions.

. The projected SSF can also be derived exactly using
Dirac composite fermion theory [3]

(4N +2)2 — 22)J5(2)
)= = NeN T )
(AN +2)% = 22)Ja(2)

51-0(q) = 32(N + 1)(2N + 1)4J1(2) . (44)

(43)

With these expressions at hand we can check that (21)
holds up to order N=2. Tt also follows from (41)-(44)
that (8) and (28) hold in the large N limit at leading
and sub-leading orders in N. We emphasize that these
are quite non-trivial checks that probe the relations we
derived in all orders in the momentum expansion.

Conclusion. We have presented arguments for the
particle-hole duality in the lowest Landau level. This
duality implies several exact, non-perturbative relations
between the observables in the pair of PH-dual states
such as static structure factor, Hall conductivity and re-
sponse of the electron density to curvature. Our results
for the coefficients of the small momentum expansion of
these response functions likely do not hold for PH-dual
states which are both non-chiral (as defined in [46], see
also [8]) — a notable example of such a state is the PH-
Pfaffian. However, Eq. (27) should be applicable to such
states as well. We leave the investigation of general non-
chiral states (and in particular the PH-Pfaffian) to future
work.
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