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We demonstrate experimentally, numerically and analytically that soft architected materials can
support the propagation of elastic vector solitons. More specifically, we focus on structures com-
prising a network of squares connected by thin and highly deformable ligaments and investigate the
propagation of planar nonlinear elastic waves. We find that for sufficiently large amplitudes two
components - one translational and one rotational - are coupled together and co-propagate without
dispersion. Our results not only show that soft architected materials offer a new and rich platform to
study the propagation of nonlinear waves, but also open avenues for the design of a new generation
of smart systems that take advantage of nonlinearities to control and manipulate the propagation
of large amplitude vibrations.

Highly-deformable, soft structures characterized by a
nonlinear response have enabled the design of new classes
of tunable and responsive systems and devices, includ-
ing soft robots [1, 2], self-regulating microfluidics [3], re-
usable energy absorbing systems [4, 5] and materials with
programmable response [6]. Furthermore, soft architec-
ted materials (also referred to as soft/nonlinear metama-
terials) present opportunities to control the propagation
of elastic waves, since their dispersion properties can be
altered by applying a large, nonlinear pre-deformation
[7–9]. However, most of the investigations have exclus-
ively focused on linear stress waves, although the compli-
ant nature of soft systems is capable of supporting large-
amplitude nonlinear waves.

Nonlinear waves not only display a very rich behavior,
but also enable a broad range of applications, including
impact mitigation layers [10, 11], asymmetric transmis-
sion [12, 13], switches [14] and lenses [15]. While such
waves have mostly been studied in granular media [10–
16], soft architected materials also provide an ideal envir-
onment for their propagation. In fact, even soft metama-
terials made of a single linear material can support a wide
range of effective nonlinear behaviors that are determined
by the architecture. This marks an important difference
between soft architected materials and granular media,
since in the latter the nonlinear response is determined
by the contacts between grains and those are difficult to
control [17], especially in 2D.

In this Letter, we combine analytical, numerical and
experimental tools to study the propagation of large-
amplitude nonlinear waves in a structure comprising a
network of squares connected by thin and highly deform-
able ligaments. While the behavior of this system under
quasi-static loading has attracted significant interest as it
is characterized by effective negative Poisson’s ratio [18–
20], here we focus on its dynamic response and demon-

strate how the geometry of the system directly affects
its nonlinear dynamic elastic properties. We investigate
the propagation of nonlinear waves of mixed translational
and rotational nature and demonstrate the existence of
vector elastic solitons. Moreover, we show that by tuning
the geometry of the structure a wide range of dispersive
and nonlinear dynamic properties can be achieved.

Our system consists of a network of square domains
connected by thin ligaments (see Fig.1), all made of elast-
omeric material (polydimethylsiloxane - PDMS). The
squares have edge lengths of approximately 8 mm and
diagonals of length 2l ≈ 11.3 mm that are rotated by
an angle θ0 = 25◦ with respect to the horizontal and ver-
tical directions (see Fig. 1 (a)). Systems comprising up to
6×40 squares are fabricated with high fidelity using dir-
ect ink writing, an extrusion-based 3D printing method
[21, 22] (see SI for details [23]). After printing, all squares
are filled with PDMS and a small copper cylinder with
radius 2.38 mm is also placed at their center in order to
modify the medium inertial properties.

We start by investigating experimentally the propaga-
tion of pulse waves in the system. Impact experiments
are conducted in which a custom aluminum impactor is
used to initiate simultaneous rotation and displacement
of the squares at one end of the sample (see Fig. 1(a) and
Movies S1 and S2 [23]). Different displacement signals
are applied to the first row of squares by varying both
the initial gap between the impactor and the structure
(defining the maximum imposed displacement) and the
strength of the pulse applied to the impactor (mostly in-
fluencing the maximum imposed velocity). The propaga-
tion of the resulting pulses through the entire sample is
observed using a high speed camera (Photron FASTCAM
SA1) recording at 3000 Hz. The horizontal displacement
uj of the j-th square located in the third row (highlighted
by a horizontal orange line in Fig. 1(a)) is then obtained



2

by tracking the marker positioned at its center with a
digital image correlation (DIC) analysis [24].

In Figs. 1(b)-(e) we show results for two ex-
periments in which the impactor prescribes a dis-
placement signal to the first square characterized by
(umax

1 , vmax
1 ) = (max(u1), max(v1))=(3.11 mm, 524

mm/s) and (umax
1 , vmax

1 )=(4.10 mm, 1166 mm/s) (v1
denoting the velocity of the first square), respectively.
Note that the input displacement and velocity profiles
(i.e., u1(t) and v1(t)) are shown in Fig. S2. The evol-
ution of the horizontal displacements uj indicates that
there is a pulse propagating through the sample that
is reflected a couple of times by the boundaries before
vanishing (Figs. 1(b) and (d)). Moreover, by compar-
ing the displacement uj of all squares at different times
(Figs. 1(c) and (e)), we find that the pulses conserve their
spatial shape during propagation, suggesting that the
system can support the propagation of solitary waves.
The experimental movies also reveal that the squares
not only move horizontally when the pulse propagates,
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Figure 1. (a) The system consists of a network of square do-
mains connected by thin ligaments. Pulse waves are generated
by a hammer strike on an aluminium impactor and propag-
ate from left to right. (b)-(d) Spatio-temporal displacement
diagrams and (c)-(e) spatial displacement profiles at t= 7, 10,
13, 16 ms for an impact characterized by (b)-(c) (umax

1 , vmax

1 )
=(3.11 mm, 524 mm/s) and (d)-(e) (umax

1 , vmax

1 ) =(4.10 mm,
1166 mm/s).

but also rotate (see Movies S1, S2 and S3). However,
the image resolution (about 20 pixels per square edge
length) is not enough to monitor with sufficient accuracy
their rotation. To capture the rotational waves propagat-
ing through the sample we conduct an additional set of
experiments where the camera is focused only on four
squares, located at two-thirds of the sample. The res-
ults reported in Fig S1 and Movie S3 clearly confirm the
simultaneous propagation of translational and rotational
waves in our structure.
To get a better understanding of the dynamic response

of the structure, we investigate its behavior both numer-
ically and analytically. Since our experiments indicate
that, when the pulse propagates, the squares remain ri-
gid and the deformation localizes at the hinges, we intro-
duce a discrete model comprised of periodically arranged
rigid squares connected by linear springs at their ver-
tices (see Fig. 2(a)). More specifically, since the applied
deformation is found to induce both translation and rota-
tion of the squares [18–20], we consider two linear springs
at each vertex, a compression/tension spring with stiff-
ness k and a torsional spring with stiffness kθ. Moreover,
since we only consider the propagation of planar waves in
the x-direction, guided by our experiments we assign two
degrees of freedom to the j-th rigid square: the displace-
ment in x-direction uj and the rotation θj (see Fig. 2(a)).
Note that, as indicated by the blue and red arrows in
Fig. 2(a), we define positive direction of rotation altern-
atively for neighboring squares (i.e., if for the j-th square
a clockwise rotation is positive, then for (j − 1)-th and
(j+1)-th ones counterclockwise rotation is considered as
positive).

Assuming, periodic boundary conditions in the y-
direction, it follows that the governing equations of mo-
tion for the j-th square can be written as (see SI for
details [23])

m
∂2uj

∂t2
= k

[

uj+1 − 2uj + uj−1

− l cos(θj+1 + θ0) + l cos(θj−1 + θ0)
]

+
kθ
l
(θj+1 − θj−1) sin(θj + θ0), (1)

J
∂2θj
∂t2

= −kθ ((θj+1 + 6θj + θj−1))

− kl(uj+1 − uj−1) sin(θj + θ0)

+ kl2 cos(θj + θ0)
[

sin(θj+1 + θ0) + sin(θj−1 + θ0)
]

+ kl2 sin(θj + θ0)
[

cos(θj+1 + θ0) + 4 cos(θj + θ0)

+ cos(θj−1 + θ0)− 8 cos(θ0)
]

, (2)

where m and J denote the mass and the moment of in-
ertia of the squares, respectively. For the structure con-
sidered in this study, we have m = 2.093 g and J = 18.11
g·mm2. Moreover, the stiffnesses k and kθ can be estim-
ated from the experimentally measured maximal group
velocity and numerically calculated stiffness under uni-
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Figure 2. (a) Schematics of the system. (b) Spatial displace-
ment profiles at time t = 9.5 ms for five different impacts
characterized by different combinations of u

max

1 and v
max

1 .
(c) Spatial displacement profiles at t = 6.7, 10 at 13.3 ms
for a single experiment with (umax

1 , vmax

1 ) =(4.10 mm, 1166
mm/s). In (b) and (c) both experimental results (markers)
and numerical prediction (blue lines) are shown.

axial compression, respectively (see SI for details [23]),
yielding k = 19235 N/m and kθ = 0.0427 Nm/rad. Fi-
nally, we note that in this model we neglect the effect of
damping, which is known to have a pronounced effect on
the dynamic response of structures made of soft materi-
als. This is because here we focus on waves propagating
for a relatively short distance (before reflection at the
right boundary). In this case we find that damping re-
duces the displacement amplitude by less than 10% and
does not alter the studied nonlinear effects.

To test the relevance of our discrete model, we numer-
ically solve Eqs. (1)-(2) using the Runge-Kutta method
and compare their predictions to our experimental res-
ults. In our numerical analysis we consider a chain com-
prising 40 squares, apply the experimentally extracted
displacement signal, u1(t), to the first square on the
left (while fixing its rotation, i.e., θ1(t) = 0) and im-
plement free boundary conditions at the right end. In
Fig. 2(b) we report numerical and experimental results
at t = 9.5 ms for different impact conditions, while in
Fig. 2(c) we focus on an impact for which umax

1 = 4.10
mm and vmax

1 = 1166 mm/s and compare the numer-
ical predictions and experimental data at different times.
Both plots show that the pulse profiles and amplitudes
are well captured by the discrete model. Moreover, the
numerical results in Fig. 2(c) confirm that for certain im-
pact conditions the pulse propagates with no apparent
distortion.

While Eqs. (1)-(2) contain the full nonlinear and dis-

persive terms of the modeled system, a deeper insight into
its dynamics can be achieved by further simplifying them
to derive analytical solutions. To this end, we first in-
troduce the normalized displacement Uj = uj/2l cos(θ0),

time T = t
√

k/m, stiffness K = kθ/kl
2 and inertia

α = l/(
√

J/m) (see SI for details [23]). Second, we take
the continuum limit of Eqs. (1)-(2) and retain the nonlin-
ear terms up to the second order, as well as the dominant
dispersion terms, obtaining (see SI for details [23])

∂2U

∂T 2
=

∂2U

∂X2
+ (1−K) tan(θ0)

∂θ

∂X
, (3)

∂2θ

∂T 2
= α2{[cos(2θ0)−K]

∂2θ

∂X2
− 2 sin(2θ0)

∂U

∂X

− 4[2K + cos2(θ0)
∂U

∂X
+ 2 sin2(θ0)]θ

− 4 sin(2θ0)θ
2}, (4)

where X = x/2l cos(θ0) with x denoting the coordin-
ate along the x-axis. Finally, we introduce the travelling
wave coordinate ζ = X − cT , c being the normalized
pulse velocity, so that Eqs.(3)-(4) become

∂2U

∂ζ2
= −

(1−K) tan(θ0)

1− c2
∂θ

∂ζ
, (5)

∂2θ

∂ζ2
= 2α2β sin(2θ0)

∂U

∂ζ
+ 4α2β sin(2θ0)θ

2

+ 4α2β[2K + cos2(θ0)
∂U

∂ζ
+ 2 sin2(θ0)]θ, (6)

where β = [α2(cos(2θ0) − K) − c2]−1. Note that the
displacement U(ζ, T ) and rotation θ(ζ, T ) are now con-
tinuous functions of ζ and T . By integrating Eq. (5) with
respect to ζ and assuming a zero integration constant (i.e.
a wave with a finite temporal support) we obtain

∂U

∂ζ
= −

(1−K) tan(θ0)

(1− c2)
θ, (7)

which can then be substituted into Eq. (6) to obtain

∂2θ

∂ζ2
+ Pθ +Qθ2 = 0, (8)

where

P =
4α2β

(1− c2)

[

(2c2 − 1−K) sin2 θ0 − 2(1− c2)K
]

,

Q =
2α2β

(1− c2)
(2c2 − 1−K) sin(2θ0).

Note that Eq. (8) has the form of the well-known nonlin-
ear Klein-Gordon equation with quadratic nonlinearity
[25]. When P < 0 and Q > 0, analytical solutions of
Eq. (8) exist in the form of a solitary wave with a stable
profile

θ = A sech2
ζ

W
, (9)
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Figure 3. (a) Comparison between analytically (lines) and
numerically (markers) predicted normalized displacement and
rotation profiles at T = 10, 20 and 30 and for θ0 = 25◦,
α = 1.7, K = 0.073. (b) Evolution of W as a function of A
and K (assuming θ0 = 25◦ and α = 1.7). (c) Evolution of c as
a function of A and θ0 (assuming K = 0.073 and α = 1.7) (d)
Evolution of c as a function of A and K (assuming θ0 = 25◦

and α = 1.7).

where A is the amplitude of the pulse and c and W are
its velocity and characteristic width, which can be de-
termined as (see SI for details [23]),

c =

√

6K + 3 (1 +K) sin2(θ0) +A (1 +K) sin(2θ0)

6K + 6 sin2(θ0) + 2A sin(2θ0)
,

W =
1

α

√

(1− c2)[α2 (cos(2θ0)−K)− c2]

2(1− c2)K + (1− 2c2 +K) sin2(θ0)
. (10)

Finally, by substituting Eq. (9) into Eq. (7) the solution
for the displacement is found as

U = A
(1−K)W tan(θ0)

(1− c2)

[

1− tanh
ζ

W

]

. (11)

Eqs. (9) and (11) reveal a unique feature of our system:
its ability to support an elastic vector soliton. In fact,
in our nonlinear system two components - one transla-
tional and one rotational - are coupled together and co-
propagate without distorsion nor splitting. While vector
solitons have been previously observed in optics [26, 27],
this is the first time - to the best of our knowledge-
that such phenomenon is experimentally observed in
the elastic case. Finally, we note that even in the lin-
ear regime our system supports coupled translational-
rotational modes (see SI for details [23]), a feature pre-
viously only observed in granular crystals [28, 29].
Next, we test the validity of our analytical solution

Eqs. (9)-(11) by comparing it to numerical results ob-
tained by direct integration of the full discrete model
(Eqs. (1)-(2)). Note that in this set of simulations we as-
sign to the first square on the left the displacement and
rotation signals given by Eqs. (9) and (11), respectively,
and keep free boundary conditions at the right end. In
Fig. 3(a) we focus on the structure considered in this

study (for which θ0 = 25◦, α = 1.7 and K = 0.073)
and show the profiles predicted analytically and numer-
ically for both displacement (left axis) and rotation (right
axis) assuming A = 0.05. We find an excellent agreement
between our analytical (lines) and numerical (markers)
results. While for this set of parameters our theory pre-
dicts the propagation of a solitary wave with velocity
c = 0.8152 and characteristic width W = 5.9071, the
numerical simulations show the propagation of a pulse
that conserves its spatial shapes and is characterized by
c ∼ 0.8030 and W ∼ 5.8824. It is important to note
that, as shown by Eqs. (10), both the pulse width and
velocity can be tuned and controlled by altering either
the amplitude of the wave (i.e. by changing A) or the
geometry of the structure (i.e. by changing θ0, K, and
α). To highlight this important point, in Figs. 3(b)-(d)
we report the evolution of c and W as a function of A,
K and θ0. The contour plots indicate that W can be
tuned by varying either A or K. Differently, we find that
c is affected by changes in θ0 and K (see also Fig. S5).
The plots also reveal another interesting feature of our
system: the solitons propagate faster for smaller amp-
litudes.

Finally, in Fig. 4 we compare the analytical solution
to our experimental results. More specifically, for each
experiment we extract the maximum displacement and
velocity experienced by the 1st, 2nd, 5th, 10th, 15th
and 20th squares and report them together with the ana-
lytical prediction (purple line) in the Umax-V max plane
(where Umax = max(U) and V max = max(dU/dT )). In-
terestingly, we find that all applied excitations result in
the propagation of a soliton. If the input is close to a
soliton solution, the pulse is immediately stable (i.e., even
for square number <5 the experimental markers are close
to the analytical curve). In contrast, if the applied im-
pact results in a displacement signal far from that of the
supported solitary wave, it takes 10-20 squares for the
wave to become stable. However, it is important to note
that this observation is not general and relates to the lim-
ited variety of excited displacement profiles (all of them
are reasonably close to tanh - see Fig. S2). Finally, in
all experiments we find a slight displacement amplitude
decrease along propagation, most probably the signature
of the intrinsic material damping.

In summary, we have studied experimentally, numeric-
ally and analytically the propagation of large-amplitude
nonlinear elastic waves in a structure comprising a net-
work of squares connected by thin and highly deformable
ligaments. Our results indicate that the system supports
vector elastic solitons (i.e. stable nonlinear waves with
two coupled components - one translational and one ro-
tational), whose properties can be controlled by tuning
the geometry of the structure. While in this study we
focused on the propagation of planar waves in an homo-
geneous soft architected material, the response of such
systems is very rich and there remains much to be in-
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vestigated: how do non planar waves propagate in 2D
soft architected materials? how do inhomogeneities and
defects affect the propagation of the solitons? Can the
system support bright/dark solitons? Can we excite to-
pological solitons? We believe that the tools proposed
in this study will help in answering all these questions
and, ultimately, in designing a new class of structures
and devices capable of controlling high amplitude waves
and vibrations.
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