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A multitude of possible applications along with unique coherence, chirality and symmetry prop-
erties makes the control of molecular torsion with moderately strong, non-resonant laser pulses a
fascinating subject. A description of combined rotation and torsion requires at least four angular
degrees of freedom, which is challenging for the majority of systems. Lower-dimensional models
have been proposed but also questioned. Here, we develop a four-dimensional model for the cou-
pled rotational-torsional motions of molecules consisting of two identical moieties. By comparing
four-dimensional calculations with a two-dimensional model, we define conditions under which the
lower-dimensional model is valid. In particular, we point to the crucial role of coordinate depen-
dence of the polarizability tensor. Our results do not agree with those of previous four-dimensional
calculations, but support the conclusions of recent experiments.

The ability to control the torsions of non-rigid
molecules has been fascinating theoretical chemists and
molecular physicists for several decades. Among the va-
riety of applications of torsional control that have fu-
eled this interest are the control of energy transfer [1],
charge transport [2] and chemical reactions [3], the en-
hancement of transient absorption spectroscopy [4] and
the design of molecular rotors [5–7]. A relatively recent
approach to manipulating the conformation of molecules
in the electronic ground state involves the application of
a moderately intense, non-resonant laser field to generate
a broad torsional wavepacket that is correspondingly lo-
calized in the conjugated angle space. This approach was
first proposed in 2007 [8] and later explored in more detail
in several theoretical and experimental studies [7, 9–12].
Extending these ideas, many interesting topics have been
studied, including the interconversion of enantiomeres of
axially chiral molecules [4, 13], nuclear spin selective con-
trol of molecular torsion [6] and torsional alignment in a
dissipative environment [14].

As the interaction with non-resonant laser fields cou-
ples the molecular torsion with rotation, at least four
coordinates are necessary to characterize the molecular
motion—the three Euler angles, θ, φ, χ, and one coor-
dinate ρ describing intramolecular torsion. The high
numerical effort of accounting for four coupled angular
modes led to the application of low-dimensional models
in the vast majority of theoretical studies on torsional
control, presupposing a two-step mechanism to be valid:
A nanosecond laser pulse aligns the principal molecu-
lar axis, before a second, femtosecond laser pulse se-
lectively excites molecular torsion, see Fig. 1. Several
experimental studies suggest the validity of this model
[7, 10–12]. Yet, strong doubts have been expressed con-
cerning the possibility to control torsions separately from
the rotational modes [15–17]. Quantum dynamical sim-
ulations for single-pulse excitations suggested that the

torsional dynamics strongly depends on the overall ro-
tation and hence the torsional alignment predicted by
low-dimensional models is completely destroyed due to
rotational-torsional couplings [15, 17].

Given the results of [15–17], the growing experimen-
tal interest in the strong field torsional control approach
[7, 10–12] and the large variety of applications of tor-
sional control [9], it is important to revisit this prob-
lem with reliable calculations. In particular, since the
many applications depend on the assumption that tor-
sional alignment does not disappear due to coupling to
rotational degrees of freedom. In the present work we
perform fully quantum, four-dimensional (4D) calcula-
tions of torsional alignment that question the conclusions
of [15–17]. We point to, and physically explain, the role
played by the coordinate dependence of the polarizability
tensor. By comparing the 4D with the two-dimensional
(2D) approach to torsional control, we suggest that the
reliability of 2D simulations is closely related to the qual-
ity of the additive model, commonly used in strong-field
control for describing molecular polarizabilities. More-
over, we illustrate that the rotational-torsional coupling
can be effectively controlled by appropriately choosing
the laser parameters.

As in earlier works [15–17], we consider molecules
in which the two molecular subunits undergoing mu-
tual torsion are identical. In particular, we exemplify
our arguments for diboron tetrafluoride (B2F4) and 4,4’-
Dibromobiphenyl (DBBP); two very different molecules
in what regards their torsional structure, rotational
constants and polarizability anisotropy, which together
are expected to represent many chemically interesting
molecules. We limit our discussion to states having
the symmetry of the field-free rotational-torsional ground
states [15–19].

The complete Hamiltonian for the two-pulse scenario
illustrated in Fig. 1 is given by Ĥ = Ĥrt + Ĥ int

1 + Ĥ int
2 ,
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FIG. 1. (a) Excitation scheme: (i) A nanosecond pulse, E1,
adiabatically aligns the most polarizable molecular axis. (ii)
A second, femtosecond pulse, E2, polarized perpendicular to
the first pulse excites a rotational-torsional wave packet. The
angle between the molecular axis and the external field E1

is θ. (b) Torsion angle: The torsion angle ρ is half of the
dihedral angle between the two moieties of the molecule.

consisting of the field-free rotational-torsional Hamil-
tonian Ĥrt and the Hamiltonians describing the field-
matter interaction Ĥ int

i . The field-free term Ĥrt reads
[19]
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In Eq. (1), A is the rotational constant associated with
the torsional axis, and B is the rotational constant per-
pendicular to the molecular axis for 2ρ = {90◦, 270◦}.
Both constants and the torsional potential V tor of the
electronic ground-state we calculate using density func-
tional theory [26]. Since the rotational functions in Eq.
(2) depend on ρ, the rotations and torsion are coupled in
the field-free case. The magnitude of the effective cou-
pling BX2±Y 2/B is completely determined by the reduced
rotational constant Bred = B/2A. For Bred → 0, the
coupling vanishes and the rotational-torsional Hamilto-
nian Ĥrt is a separable function of the Hamiltonian of a
symmetric top and the pure torsional Hamiltonian.

The Hamiltonians for the field-matter interaction can
be written as [20]

Ĥ int
i = −1

4
|εi(t)|2αqq , (3)

where εi(t) is the envelope of laser pulse Ei(t). We choose
q = z and x for the polarization directions of the first and
second pulse, respectively. We express the laboratory-

fixed components of the molecular polarizabilities
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in terms of the elements of the Wigner D-matrices DJm,k
[21] and the symmetry-adapted, molecule-fixed compo-
nents of the polarizability tensor [18] α(0,0), α(2,0) and
α(2,2). For molecules with feasible torsion, the latter de-
pend on the torsion angle ρ, resulting in a second, field-
induced type of rotational-torsional coupling. A reliable
description of the ρ-dependence is thus essential to un-
derstand this kind of coupling. Due to their symmetry,
we can write the components of the polarizability tensor
as

α(J,K)(ρ) ≈ α(J,K)
0

N∑
n=0

A(J,K)
n cos((4n+K)ρ) . (5)

Here, (J,K) = {(0, 0), (0, 2), (2, 2)}, α(J,K)
0 ≡ α(J,K)(ρ =

0), and A(J,K)
n are expansion coefficients we determine

numerically. Our quantum chemical calculations show
that for the systems we consider here, N = 2 is sufficient
to describe the ρ-dependence of the polarizabilities [26].
Using Eq. (5), we go beyond the majority of theoretical
approaches to torsional control, which make use of the
additive model for molecular polarizabilities. The addi-
tive model expresses the polarizabilities of the molecule
as sums of the polarizabilities of the molecular subunits
[22], which is identical to setting N = 0 in Eq. (5).

In a 2D description, we premise that the principal
molecular axis is perfectly aligned to the laboratory-fixed
z-axis, as depicted in panel (ii) in Fig. 1(a). The remain-
ing coordinates are the Euler angle χ and the torsion
angle ρ. Formally, we obtain the 2D Hamiltonian by cal-
culating the limit θ → 0 and φ → 0 in Eqs. (1), (3)
and (4). Within the 2D approach to torsional control
the field-free coupling therefore vanishes.

To quantify their interaction with the nanosecond
pulse, we assume that the molecules are initially in their
rotational-torsional ground state and adiabatically trans-
form into the ground state of the field-dressed Hamilto-
nian Ĥ fd ≡ Ĥrt + Ĥ int

1 . We compute these “pendular
states” [23] by calculating the eigensystem of Ĥ fd using
a variational procedure with tensor-products of the sym-
metric top and torsional states as a basis. The interac-
tion with the femtosecond pulse then creates a rotational-
torsional wave packet that can be written as a superpo-
sition of pendular states. As the pulse is short compared
to the rotational-torsional dynamics, we can employ the
impulsive approximation [6, 24] to obtain the expansion
coefficients in that superposition. To quantify the degree
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FIG. 2. Alignment factors 〈cos2 θ〉 (a) and 〈cos2 2ρ〉 (b) of B2F4 after interaction with an x-polarized pulse with intensity
I2 = 50 TW· cm−2 and duration τ = 150 fs. The solid curves display the results of 4D simulations in the presence of a z-
polarized nanosecond pulse with I1 = 0, 1, 5 TW· cm−2 (blue, green and red curves online). The dashed lines represent the same
simulations without field-free rotational-torsional coupling. 2D simulations are depicted in dotted lines in panel (b). Time is
given in units of t0 = ~/A = 30 ps. For all 4D simulations Jmax = 20. The cartoons illustrate the classical interpretation of
the respective alignment factor: the molecules are completely randomly (I) or almost perfectly (II) aligned to the polarization
direction of the first laser pulse; B2F4 shows almost perfect (III) or almost no (IV) torsional alignment.

of rotational and torsional control, we calculate the align-
ment factor for the torsion 〈cos2 2ρ〉 and the alignment
of the principal axis with respect to the polarization of
the first laser pulse 〈cos2 θ〉. The former factor is equal
to one (zero), if the two parts of the molecule are copla-
nar (twisted by 90◦); the alignment factor 〈cos2 θ〉 is one
(zero), if the molecule is perfectly aligned (orthogonal)
to the polarization of the first laser pulse. Per definition,
in the 2D model, 〈cos2 θ〉 ≡ 1.

As a first example, we investigate the rotational-
torsional dynamics of B2F4, which has a low effective tor-
sional barrier and a potential minimum at 2ρ ≈ 70◦ [26].
Figure 2 shows the rotational alignment factor 〈cos2 θ〉
(a) and the torsional alignment factor 〈cos2 2ρ〉 (b) for
B2F4 after excitation with a short, x-polarized laser pulse
within the 4D (colored lines) and 2D (dotted line) ap-
proaches. In all cases, we observe a considerable increase
of the torsional alignment immediately after the interac-
tion: the small torsional barrier and the initially twisted
geometry of B2F4 promote excitation of torsional motion
[6]. In the absence of the nanosecond pulse, the molec-
ular axis is not aligned, the angular distribution of the
molecules remains isotropic, as indicated in oval (I) in
Fig. 2 (a). Here, the degree of torsional alignment is
reduced compared to the 2D model. In the presence of
a nanosecond pulse (green and red lines), however, the
molecular axis is well aligned, and the initial torsional
dynamics is in very good agreement with the 2D model.

For B2F4, our calculations thus support what recent

experiments have illustrated: the adiabatic pulse effec-
tively transforms the motion to two-dimensional, sim-
plifying the multimode dynamics and allowing for the
selective control of the torsion [7, 10–12]. For I1 =
1 TW· cm−2 (green lines), the good agreement between
2D and 4D simulations continues during the later stage of
the time-evolution. Hence, in case of moderately strong
adiabatic fields, our simulations justify a 2D description
of the rotational-torsional dynamics, and a “breakdown
of torsional quantum control”, as observed in earlier sim-
ulations [15–17], does not occur. For a stronger adiabatic
field (red line), the results are less intuitive: although
the agreement between the two models is excellent for
short time scales, the 2D model does not fully account
for the dephasing that the 4D model exhibits as time
evolves. Similar non-monotonous behavior has been ob-
served earlier in the dynamics of rotational and torsional
wavepackets [6, 24, 25].

Our second example, DBBP, displays very different
rotational-torsional dynamics, as we show in Fig. 3. In
order to simplify the comparison of the two molecules, we
reduce the effective barrier of DBBP to that of B2F4 and
adjust the laser intensities. First, we find that the align-
ment factor 〈cos2 θ〉 is almost constant in time. Thus,
the alignment of the principal molecular axis and the
rotational-torsional dynamics perpendicular to it are sep-
arated since they occur on different time scales. With-
out the nanosecond pulse (blue lines), 〈cos2 θ〉 ≈ 1/3, i.e.
the angular distribution of molecules is almost isotropic,
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FIG. 3. Alignment factors 〈cos2 θ〉 (a) and 〈cos2 2ρ〉 (b) of
DBBP after interaction with a x-polarized pulse of intensity
I2 = 5.6 TW· cm−2 and duration τ = 150 fs. The solid curves
display the results of 4D simulations in the presence of a z-
polarized nanosecond pulse with I1 = 0, 60, 300 GW· cm−2

(blue, green and red curves online). The dashed lines rep-
resent the same simulations without field-free rotational-
torsional coupling. 2D simulations are depicted in dotted
lines in panel (b). Time is given in units of t0 = ~/A = 50
ps. For all 4D simulations Jmax = 20.

while a moderately intense nanosecond pulse (green lines)
almost perfectly aligns the molecules. For DBBP, how-
ever, pre-alignment does not lead to better torsional
alignment. Here, it is the isotropic angular distribution
(blue lines) that promotes extended torsional dynamics
and alignment. Analogously to B2F4, the simulations
from the 2D model (dotted lines in Fig. 3) agree best
with the 4D simulations if the nanosecond pulse is of
moderate intensity (green line in Fig. 3). Yet, the two
curves are shifted: at t=0, the green curve already shows
a slightly larger amount of torsional alignment. This is
because for DBBP, the lowest field-dressed state contains
contributions from excited torsional states, which are not
accounted for in the 2D model. The effect is even more
pronounced with increasing intensity of the nanosecond
pulse, as the red curves in Fig. 3 (b) show.

To unravel the mechanisms responsible for the com-
plex torsional dynamics illustrated in Figs. 2 and 3, we
calculated the alignment factors without field-free cou-
pling; these results are depicted in dashed lines in Figs.
2 and 3. For B2F4 (Bred = 0.19), comparison with the
calculations including the full coupling (solid lines in Fig.
2) shows that the field-free coupling slightly reduces the
torsional and rotational alignment. However, the effect is
too small to account for the differences between 2D and
4D simulations. For DBBP (Bred = 0.015), Fig. 3, the
field-free rotation-torsion coupling has practically no in-
fluence on the alignment, neither for the torsion nor the
rotation. We conclude that in general the effect of field-

FIG. 4. Left: Torsional alignment factor 〈cos2 2ρ〉 for B2F4

(upper panel) and DBBP (lower panel) after interaction with
the second laser pulse with intensity I2 = 50 TW· cm−2 for
B2F4 and I2 = 5.6 TW· cm−2 for DBBP; τ = 150 fs in
both cases. For the intensity of the nanosecond pulse we
chose I1 = 1 TW· cm−2 for B2F4 and I1 = 300 GW· cm−2

for DBBP. Time is given in units of t0 = ~/A = 30 ps for
B2F4 and t0 = ~/A = 50 ps for DBBP. Right: ρ-dependence

of the polarizabilities α(0,0)
/α(0,0)

0 (top), α(2,0)
/α(2,0)

0 (middle)

and α(2,2)
/α(2,2)

0 (bottom) for B2F4 (upper panel) and DBBP
(lower panel). In case they are distinguishable, calculations
with the full form of the polarizabilities (blue lines online) are
marked with qc, calculations using the additive model (brown
lines online) with am; 2D simulations using the additive model
are illustrated by dotted lines.

free rotation-torsion couplings on torsional alignment is
comparatively small and the more important source of
torsion-rotation interaction is the field-induced coupling,
expressed by the polarizabilities of Eq. (4).

We can underline our argument by scrutinizing a fur-
ther assumption made in most of the past studies: the
additive model for the molecular polarizabilities. Within
the additive model, only the component α(2,2) depends
on ρ, while α(0,0) and α(2,0) are considered to be con-
stant, minimizing the field-induced rotational-torsional
coupling, c.f. Eq. (5). In Fig. 4, the ρ-dependence
of the polarizability is depicted for the two examples
B2F4 and DBBP. For B2F4 the additive model is a good
approximation, while for DBBP the terms α(0,0) and
α(2,0) differ considerably from the additive model. In-
tuitively, this result is expected: molecules with large
conjugated π-systems at the coplanar configuration, such
as substituted biphenyls, have much greater polarizabil-
ity anisotropies than smaller molecules like B2F4. Yet,
as this conjugation is lost at the twisted conformation,
their polarizability also depends more strongly on the tor-
sion angle. Consequently, as shown in Fig. 4, for DBBP
we observe a considerable difference between simulations
employing the additive model (brown line) and ones ac-
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counting for the full (blue line) ρ-dependence already at
t = 0, while for B2F4 (upper panel) there is almost no dif-
ference. Importantly, the correct coordinate dependence
of the polarizability tensor effectively increases the inter-
action term and hence improves the torsional alignment
as compared to past work where the additivity approxi-
mation was invoked. From Fig. 4 we also learn that the
validity of the 2D model and the additive model corre-
lates: Considering B2F4, the results of the 4D simulations
with accurate polarizabilities and subject to the additive
model, along with the 2D simulations based on the ad-
ditive model almost coincide. For DBBP, the 4D and
2D simulations lead to practically identical results if the
additive model is applied (see solid and dashed brown
lines in the lower panel of Fig. 4), while with the com-
plete polarizability the 4D and 2D simulations lead to
very different torsional alignment factors, see also Fig. 3
(b). Thus, for most molecules, an accurate description of
the molecular polarizabilities beyond the additive model
is crucial to predict the rotational-torsional dynamics.

Summarizing, we performed fully quantum, 4D calcu-
lations of torsional control and used them to (1) illus-
trate the critical role played by proper description of the
polarizability coordinate-dependence, neglected in past
studies; (2) explain that rotation-torsion coupling, in par-
ticular field-induced coupling, does not destroy torsional
alignment as argued in the past but rather typically as-
sists it; and (3) show how and why the validity of low-
dimensional models depends on the choice of the molecule
and laser parameters. Because the relevant coupling be-
tween rotations and torsions is field-induced, rather than
field-free, it can be steered by choosing the polarizations
and intensities of the laser fields. We therefore do not
believe that temperature is as significant for deciding
whether 2D models are reliable approximations as ear-
lier studies have claimed it is [15–17]. Due to the high
computational cost of full-dimensional simulations, the
study of many applications of torsional alignment will
continue to rely on low-dimensional models. Our inves-
tigations show that such models are qualitatively correct
and suggest that their quantitative accuracy, if necessary,
could be enhanced by adiabatic separation of the fast and
slow degrees of freedom.
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