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We argue that many features of the structure of nuclei emerge from a strictly perturbative expan-
sion around the unitarity limit, where the two-nucleon S waves have bound states at zero energy.
In this limit, the gross features of states in the nuclear chart are correlated to only one dimensionful
parameter, which is related to the breaking of scale invariance to a discrete scaling symmetry and set
by the triton binding energy. Observables are moved to their physical values by small, perturbative
corrections, much like in descriptions of the fine structure of atomic spectra. We provide evidence
in favor of the conjecture that light, and possibly heavier, nuclei are bound weakly enough to be
insensitive to the details of the interactions, but strongly enough to be insensitive to the exact size
of the two-nucleon system.

For the purposes of nuclear physics, QCD, the the-
ory of strong interactions, has essentially two indepen-
dent parameters, namely the up and down quark masses.
Their average controls the pion mass and consequently
the range of the nuclear force, R ∼M−1π ' 1.4 fm. Their
difference, plus electromagnetism, generates small differ-
ences in masses and interactions between neutrons and
protons. At the physical point, the two-nucleon (NN)
scattering length in the 3S1 channel is at ' 5.4 fm, with
the deuteron as shallow bound state (BD ' 2.224 MeV);
in the 1S0 channel, as ' −23.7 fm, and a shallow virtual
bound state exists at BNN∗ ' 0.068 MeV. With relatively
small changes in quark masses, these states become, re-
spectively, unbound and bound [1–4]. In the physics of
cold atoms near Feshbach resonances, external magnetic
fields play a role similar to the quark masses and allow
the scattering length to be tuned arbitrarily [5].

Approximate correlations BD,NN∗ ≈ 1/(MNa
2
t,s), with

MN ' 940 MeV the nucleon mass, hold because the size
of all these scales is unnatural compared to the typical
interaction range R. The NN system therefore appears
close to the unitarity (or unitary) limit, where both states
cross zero energy, the scattering lengths become infinite
(1/at,s = 0), and cross sections saturate the unitarity
bound. It has indeed been suggested that this happens
not far from the physical point [6]. While this pre-
sumed proximity has been discussed qualitatively for a
long time, it has traditionally not played any special role
in constructing nuclear forces, and it is neither assessed
nor exploited in order to simplify the description of nu-
clei. As an exception, Refs. [7, 8] use potential models
to map out correlations between observables in three and
four-nucleon systems as the limit is approached at fixed
at/as.

Here we argue that the typical particle binding mo-

mentum QA of the A-nucleon system satisfies 1/as,t <
QA < 1/R, so that a combined expansion in QAR and
1/(QAas,t) converges quickly and quantitatively repro-
duces the physical systems. With this, the gross features
of states in the nuclear chart are determined by a very
simple leading-order interaction (governed by a single pa-
rameter), whereas, much like the fine structure of atomic
spectra, observables are moved to their physical values
by small perturbative corrections. Our conjecture places
nuclei in a sweet spot: bound weakly enough to be insen-
sitive to the details of the interaction, but dense enough
to be insensitive to the exact values of the large two-
particle scattering lengths. One might surmise that due
to the absence of scales, a theory at the unitarity limit
allows only for trivial observables, like bound states with
zero or infinite energies. However, the nontrivial renor-
malization of the three-body system introduces instead
exactly one new dimensionful parameter, which sets the
scale for all few-body observables. Indeed, the energies of
bosonic clusters near unitarity are determined in terms
of the trimer energy [9, 10].

In the following, we provide explicit evidence that our
conjecture holds for the binding energies of three and
four nucleons. Since the NN binding energies are small,
their dynamics is dominated by large distances and small
momenta, the regime of the effective range expansion
(ERE) [11]. Its consequences are captured by an effective
field theory which, apart from long-range electromag-
netic interactions mediated by photons (Aµ), contains
only contact interactions between nonrelativistic nucleon
isospin doublets N = (p n)T of proton and neutron fields.
Following the notation of Ref. [12], its Lagrange density
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where Dµ = ∂µ + ieAµ(1 + τ3)/2, e is the proton charge,
τa a Pauli matrix in isospin space, and Pi projectors
onto the NN S waves. Coulomb effects are included
separately in the 1S0 pp channel. C0,i, D0, etc. are
“low-energy constants” (LECs) determined from QCD
or experiment. This “Pionless EFT”reproduces the ERE
in the NN sector [13–17] but extends it to an arbi-
trary number of particles and interactions with exter-
nal fields. The two-body interactions with LECs C0,i

are related to as,t, while higher-derivative interactions
are associated with the effective ranges and higher ERE
parameters, as well as higher partial waves. The or-
ganizational principle (“power counting”) attributes the
C0,i to non-perturbative leading-order (LO), and higher-
derivative interactions to subleading orders. These are
added perturbatively and include the effects of the inter-
action range R in a systematic expansion in QR � 1,
where Q is a typical low-momentum scale.

Stability of light nuclei results from an additional LO
interaction, a single non-derivative three-nucleon (3N)
contact interaction [18–20], with LEC D0. Derivative
corrections to this 3N interaction start at next-to-next-
to-leading order (N2LO) [19, 21–24]. Little is known
about the orders at which higher-body interactions ap-
pear, except that they are not LO [10, 25–34]. Based
on a zero-range model, Refs. [35–37] report some sen-
sitivity of four-body energies to a four-body scale, but
these results do not contradict the absence of a four-
body interaction at LO in Pionless EFT. The absence of
an essential four-body parameter has also been verified in
the context of potential models with short range [38–41]
and renormalization-group analyses [42–44]. As a conse-
quence, the 3N LO strength parameter Λ?, together with
the LO two-body interactions, determines the spectrum
and scattering for systems with more particles [10, 25–
34, 45, 46]. This single relevant 3N parameter gener-
ates correlations among few-body observables such as the
Phillips [47] and Tjon [48] lines.

The standard pionless formulation with finite scatter-
ing lengths as LO input explicitly breaks two important
symmetries: First, the SU(4)W Wigner symmetry of
combined spin and isospin transformations [49] is bro-
ken in the two-body sector for at 6= as [50], while it is
obeyed by the 3N interaction [20]. Second, discrete scale
invariance leads to the log-periodic shape of the running
coupling D0 [18–20], and to an infinite geometric tower of
Efimov states in the three-body system [51], both deter-
mined by the 3N LO strength parameter Λ? (see Eq. (5)

below). It, too, is broken for as,t 6=∞.1

The unitarity limit manifestly respects both symme-
tries and has Λ? left as single parameter. In our cal-
culation, this is fixed at LO to reproduce the physi-
cal triton (degenerate with 3He at this order) as one
of the Efimov states. In fact, the 3N and 4N systems
in the unitarity limit decouple into a symmetric piece,
identical to a formulation of three- and four-boson sys-
tems, and an antisymmetric piece. At unitarity, a three-
boson Efimov state with binding energy B3 is associated
with two four-boson states [28]—one relatively deep at
B4/B3 ' 4.611, and one barely below the particle-trimer
threshold, B4∗/B3 ' 1.002 [40]. For the α particle, the
ground state is at Bα/BH ' 3.66 and the excited state at
Bα∗/BH ' 1.05, where BH ' 7.72 MeV is the 3He bind-
ing energy. In addition, models (see e.g. Ref. [53]) indi-
cate the existence of a virtual 3N state at BT∗ . 0.5 MeV
for physical scattering lengths, which becomes the sec-
ond Efimov state as BD is decreased. Thus, the 3N and
4N spectra are consistent with mildly broken discrete
scale invariance, suggesting a perturbative treatment, de-
scribed below.

For the calculation, the LO two-body potentials de-
rived from Eq. (1) are written as

V
(0)
2 =

∑
i
C

(0)
0,i |i〉|g〉〈g|〈i| , (2)

where |i〉 collects the spin-isospin structure and |g〉 im-
plements a separable regularization. With p the momen-
tum corresponding to the kinetic energy E in the NN
center-of-mass system, g(p) ≡ 〈p|g〉 satisfies g(0) = 1 and
g(p � Λ) � 1 for arbitrary cutoff Λ. The results shown
below have been obtained with two different implemen-
tations of the theory. For the 3He calculation, we follow
Ref. [12], which uses a sharp cutoff (step function) regu-
lator gs(p) = θ(Λ−p) and includes the two-body interac-
tions through dibaryon auxiliary fields, in lieu of Eq. (2).
Our new Faddeev(-Yakubovsky) calculations use a conve-
nient Gaussian regulator instead, gG(p) = exp(−p2/Λ2).
Since only the LO calculation mandates a nonpertur-
bative treatment, we use (distorted-wave) perturbation
theory for higher orders, i.e., NLO results depend only
linearly on NLO contributions. These are: i) terms as

in Eq. (2) accounting for LEC shifts C
(0)
0,i → C

(1)
0,i , corre-

sponding to the expansion C0,i = C
(0)
0,i + C

(1)
0,i + · · · and

shifting to the physical values of as,t; ii) one Coulomb
interaction ∼ e2MN/(4πQ) in the pp channel; iii) one
isospin-breaking contact interaction in the pp channel as

in Eq. (2) with C
(0)
0,1S0

→ ∆C
(1)
0,1S0,pp

, required for proper

renormalization of Coulomb effects; and iv) one range
correction per NN S wave.

1 Note that in contrast to Refs. [5, 51, 52], scattering lengths are
not rescaled with the discrete scaling factor here.
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In order to treat Coulomb effects in the 3N sector per-
turbatively, Ref. [12] expanded the 1S0 channel around
the unitary limit. Here we also expand the 3S1 channel
in 1/(Q3at), which is a significantly more radical simpli-
fication, given that at is not nearly as large as as. The
two-body amplitude is a geometric series that can be re-
summed analytically for a separable regulator. We re-
move the arbitrary Λ dependence from observables by
demanding that the two inverse scattering lengths van-
ish at LO and enter linearly at NLO. Renormalization is
achieved if

C
(0)
0,i =

−2π2

MNΛ
θ−1 , C

(1)
0,i =

MN

4πai
C

(0)2
0,i , (3)

where θ =
∫

dq g2(q)/Λ is a regulator-dependent pure
number. The LO amplitude takes then the scale invari-

ant form T
(0)
i (E) ∝ 1/

√
−MNE − iε, with NLO correc-

tions proportional to C
(1)
0,i . The deuteron binding en-

ergy vanishes up to NLO, but (BD)N
2LO = 1/(MNa

2
t ) '

1.41 MeV coincides with the standard zero-range value.
For more details, see Ref. [54].

A 3N potential is needed at LO for renormalizability,
i.e., to avoid the Thomas collapse [55] and ensure that
three-body observables have a well-defined limit for Λ�
1/R [18–20]. We choose a separable form

V
(0)
3 = D

(0)
0 |3H〉|ξ〉〈ξ|〈3H| , (4)

where |3H〉 denotes the projector onto the J = S =
T = 1/2 3N state and |ξ〉 the regulator, either sharp or
〈u1u2|ξ〉 = gG(

√
u21 + 3u22/4) for Jacobi momenta u1,2.

We take the triton binding energy as the one observable

needed to fix D
(0)
0 (Λ).

An a priori estimate of the typical A-body scale
equidistributes the total binding energy amongst its con-
stituents, i.e. QA ∼

√
2MNBA/A. For three nucle-

ons, Q3 ≈ 70 MeV appears indeed in the sweet spot,
namely larger than 1/as,t . 45 MeV but smaller than
the breakdown scale of Pionless EFT (expected to be

about 140 MeV). We thus compare the running of D
(0)
0

at full-unitarity LO with the result of standard Pionless
LO (scattering lengths at their physical values) and of
1S0 unitarity [12]. Taking the same sharp-momentum
regulator, all three cases agree well with the log-periodic
form [18–20]

D(0)(Λ) ∝ 1

Λ4

sin
(
s0 log(Λ/Λ∗)− arctan s−10

)
sin
(
s0 log(Λ/Λ∗) + arctan s−10

) , (5)

where s0 ' 1.00624. The proportionality factor is scheme
and regulator dependent. We find Λ∗ = 175, 168,
234 MeV for standard Pionless EFT, 1S0 unitarity, and
full unitarity, respectively. The changes at 1S0 and full
unitarity go in opposite directions since the 1S0 interac-
tion is more attractive at unitarity than for the physical

exp. 3He

exp. 3H

1S0 unitarity LO + NLO as/app, Coulomb
full unitarity LO + NLO as/app, at, Coulomb-B
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Figure 1. (Color online) Three-nucleon binding energies at
NLO as function of the 3N sharp cutoff. (Red) dashed curves:
results of Ref. [12], keeping the physical at at LO. (Green)
solid curves: effect of taking both S waves to the unitarity
limit at LO and then including the physical values perturba-
tively at NLO, along with one-photon exchange and its coun-
terterm. Horizontal lines: experimental values. Top (bottom)
lines: 3He (3H, fitted).

scattering length as LO input, while the 3S1 interaction
is less attractive.

At NLO the 3N interaction has the same form as
in Eq. (4), with D

(0)
0 → D

(1)
0 chosen to keep the tri-

ton energy unchanged at NLO. As a nontrivial check,
we repeat the 3He calculation of Ref. [12] with a full-
unitarity LO and add finite 1/as,t plus one-photon ex-
change and its counterterm as NLO corrections. Figure 1
shows excellent agreement, with only small differences to
1S0 unitarity. Convergence with the cutoff is evident.
We predict a triton-helion splitting (BT − BH)NLO '
(0.92 ± 0.18) MeV, compared to the experimental value
(BT − BH)exp ' 0.764 MeV. Our 20% error esti-
mate follows Ref. [12] and is larger than the additional
O(1/(Q3at)

2) from the new expansion.
At full unitarity, the LO spectrum consists of a series

of states spaced by a factor of exp(2π/s0) ≈ 515 [51]. An
infinite number of states shallower than the triton/helion
accumulates at zero energy. These lie outside the range
of applicability of our expansion since their typical mo-
menta are not large compared to 1/|as,t|. Nevertheless
looking at their perturbative shifts, we find that at NLO
they remain an order of magnitude shallower than the
N2LO deuteron, and generally we expect them to dis-
appear above threshold at N2LO. In addition, with in-
creasing cutoff, deeper 3N states enter the spectrum with
binding momenta well above 1/R. These are well outside
the range of validity of the EFT and thus not a funda-
mental issue, but they complicate the numerical solution
of the 4N problem. For now, we restrict our 4N cal-
culations to a Λ range in which these are absent. For
simplicity, we neglect electromagnetic and range correc-
tions at NLO, focusing on the 1/(Q4at) expansion.

Our 4N calculation follows Refs. [25–27] (based, in
turn, on Ref. [56]) with an independently developed nu-
merical implementation. We include a sufficient number
of angular components to ensure numerical convergence;
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unitarity LO, lmax = 0
unitarity LO, jmax = 3/2

exp. 4He
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unitarity LO + NLO as,t, jmax = 3/2
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Figure 2. (Color online) 4He binding energy as function of the
Gaussian cutoff. (Blue) solid and (green) dashed lines: stan-
dard Pionless EFT and full unitarity at LO, respectively, with
partial waves up to jmax = 3/2. (Blue) dot-dashed and (green)
dotted line: same for S waves only (lmax = 0). (Green) di-
amonds (lmax = 0) and circles (jmax = 3/2): first-order cor-
rections in 1/as,t are added. Results for jmax = 2 are almost
identical to jmax = 3/2 and not shown. Large symbols on right
edge: Λ → ∞ extrapolation (see text).

see a subsequent publication for details [57].

Figure 2 shows results for the α-particle binding energy
Bα(Λ). They are well fitted with a quadratic polynomial
in 1/Λ for large Λ, which we therefore use to extrapolate
Λ→∞. For standard Pionless EFT at LO, they are con-
sistent with Refs. [25–27]. Implementing the unitarity-
limit at LO leads to about 10 MeV more binding, as ex-
pected from a more attractive 3N interaction. We find a
bound excited state just below the proton-triton breakup
threshold, in contrast to 0.3 MeV above as indicated by
experiment. The LO results (Bα/BT )LO = 4.66 for the
ground and (Bα∗/BT )LO = 1.002 for the excited state of
4He agree with four-boson unitarity [27, 28, 40].

Remarkably, the first 1/(Q4at) correction brings us
very close to the standard Pionless EFT result. That
is perhaps accidental due to the highly symmetrical na-
ture of the α particle, the level of agreement in the he-
lion being perhaps more representative. All results in
Fig. 2 are uncorrected for electromagnetic and range ef-
fects. At present, no calculation of these effects in Pi-
onless EFT exist, except for Ref. [46] where higher or-
ders were however not treated perturbatively. With the
uncertainty expected to be dominated by range correc-
tions, O(rs,t/as,t) ' 30%, we obtain (Bα)NLO(r=0) =
29.5 ± 8.7 MeV with zero effective ranges. The ra-
tio (Bα/BT )NLO(r=0) ≈ 3.48 is in good agreement with
(Bα/BT )exp = 3.34.

While slow convergence for the excited-state wavefunc-
tion puts its full NLO calculation beyond our current
computational resources, we used a four-boson model
tuned such that its LO is similar to the 4He system,
namely choosing B3 = 8.5 MeV. Since the four-boson

unitarity LO, jmax = 3/2
LO with physical as,t, jmax = 3/2
unitarity LO + NLO as,t, jmax = 3/2
experiment

B α
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BT [MeV]
4 6 8 10 12

Figure 3. (Color online) Tjon line: correlation between the
4He and 3H binding energies. (Blue) solid curve: standard
Pionless LO result; (green) dashed upper curve: unitarity
limit at LO. Additional points nearly on top of the blue curve:
inverse scattering lengths as first-order perturbation. Star:
experimental point.

and 4N systems are identical for exact SU(4)W symme-
try, this is an adequate rendering of the more complex
physical world. Calculations with a2 = 20 fm and a2 =
5 fm (covering the range of typical nuclear scales) indicate
that first-order perturbations in 1/a2 indeed push the
state at B4∗ & 8.5 MeV above threshold by about 0.2 and
0.5 MeV for a2 = 20 and 5 fm, respectively. That cor-
responds to (B4∗/B3)NLO(r=0) in the range 0.94 . . . 0.98,
compared to (Bα∗/BT )exp = 0.96. The four-body ex-
cited state and the particle-trimer threshold are close,
but both are still far from the four-particle threshold; it
is reassuring that we can improve the description of the
excited state at NLO.

As a final test, Fig. 3 shows the Tjon line, i.e., the cor-
relation between 3N and 4N binding energies, obtained
by varying Λ∗. All results are calculated with jmax = 3/2
in the 4N system and use the Λ → ∞ extrapolation
discussed above. The extrapolation uncertainty is neg-
ligible compared to the 30% estimated EFT truncation
error. The remarkable agreement in Fig. 2 persists off the
physical point, providing further evidence of the power
of a perturbative expansion around the unitarity limit.
The relation between triton and 4He binding energies is
still nearly perfectly linear at NLO.

Our results suggest good convergence of the expansion
around unitarity, both order by order and to real-world
values. While the condition QAR < 1 is better satisfied
for lighter systems, it may provide at least qualitative
insight into the binding mechanisms of even the heaviest
nuclei (BA/A ≈ 8 MeV). Indeed, the rate of convergence
in observables provides ample evidence that Q3R is much
smaller than its a priori estimate, see e.g. Refs. [12, 21,
23, 58–61], and is suggestive that Q4R is smaller, too [29,
32, 46]. There is also circumstantial evidence that this
may hold for A > 4 [10].

A recent expansion around the SU(4)W limit with
the averaged physical values of the ERE parameters at
LO found good convergence for 3N binding energies and
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radii [62]. Together with the fact that SU(4)W has some
success in heavier nuclei (see e.g. Refs. [63, 64] and ref-
erences therein), this adds further credibility to our con-
jecture. In the future, we will investigate our expan-
sion in heavier nuclei, such as the isoscalars 16O [34] and
6Li [45], including observables beyond binding energies,
for example electromagnetic form factors. For nuclear
matter, saturation energies and densities are correlated
(Coester line) [65] and conjectured to be correlated to the
3N binding energy [66]. This can be understood from
discrete scale invariance [67].

In summary, we demonstrated that the physics of
A ≤ 4 nucleons is governed to a good first approxima-
tion by a single parameter Λ∗, with controlled corrections
stemming from deviations from unitarity, the interaction
range, and isospin-breaking effects. We conjecture that it
also converges for other light nuclei and speculate about
its relevance for heavy nuclei and nuclear matter. It may
not be a surprise that our results in the unitarity limit
are perturbatively close to those where the physical scat-
tering lengths are used at LO. Surprising is, however,
how well the expansion appears to converge. Our expan-
sion turns the focus away from details of the two-body
system, which has traditionally been taken as a start-
ing point to the structure of higher-body bound states,
and shifts it to a three-body interaction that underlies
systems around unitarity [5, 9, 10]. That adds the in-
triguing possibility that the approach developed here for
nucleons may prove successful also in atomic and molec-
ular physics, where finite scattering lengths are currently
treated nonperturbatively.
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