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We give a capacity formula for the classical information transmission over a noisy quantum chan-
nel, with separable encoding by the sender and limited resources provided by the receiver’s pre-
shared ancilla. Instead of a pure state, we consider the signal-ancilla pair in a mixed state, purified
by a “witness”. Thus, the signal-witness correlation limits the resource available from the signal-
ancilla correlation. Our formula characterizes the utility of different forms of resources, including
noisy or limited entanglement assistance, for classical communication. With separable encoding, the
sender’s signals across multiple channel uses are still allowed to be entangled, yet our capacity for-
mula is additive. In particular, for generalized covariant channels our capacity formula has a simple
closed-form. Moreover, our additive capacity formula upper bounds the general coherent attack’s
information gain in various two-way quantum key distribution protocols. For Gaussian protocols,
the additivity of the formula indicates that the collective Gaussian attack is the most powerful.
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Communication channels model the physical medium
for information transmission between the sender (Al-
ice) and the receiver (Bob). Classical information the-
ory [1, 2] says that a channel is essentially characterized
by a single quantity—the (classical) channel capacity, i.e.
its maximum (classical) information transmission rate.
However, quantum channels [3] can transmit informa-
tion beyond classical. Formally, a (memoryless) quan-
tum channel is a time-invariant completely positive trace
preserving (CPTP) linear map between quantum states.
Various types of information lead to various capacities,
e.g., classical capacity C [4, 5] for classical information
transmission encoded in quantum states and quantum
capacity Q [6–8] for quantum information transmission.
For both cases, implicit constraints on the input Hilbert
space, e.g., fixed dimension or energy, quantify the re-
sources. Resources can also be in the form of assistance:
given unlimited entanglement, one has the entanglement-
assisted classical capacity CE [9]. Ref. 10 and 11 provide
a capacity formula for the trade-off of classical and quan-
tum information transmission and entanglement genera-
tion (or consumption).

With the trade-off capacity formula in hand, it appears
that the picture of communication over quantum chan-
nels is complete. However, our understanding about the
trade-off is plagued by the “non-additivity” issue [3], best
illustrated by the example of C. The Holevo-Schumacher-
Westmoreland (HSW) theorem [4, 5] gives the one-shot
capacity C(1) (Ψ) of channel Ψ, which assumes product-
state input in multiple channel uses. Consider the ten-
sor product channel Ψ⊗M , it may have one-shot capac-
ity C(1)

(
Ψ⊗M

)
> MC(1) (Ψ), since it allows the input

state of ΨM to be entangled across M channel uses of
Ψ (M−shot). C (Ψ) is then given by the regularized ex-
pression as limM→∞ C(1)

(
Ψ⊗M

)
/M , which is difficult to

calculate since the dimension of the input states of Ψ⊗M

is exponential in M . If we have the additivity property
C(1)

(
Ψ⊗M

)
= MC(1) (Ψ), the formula of the capacity is

greatly simplified, i.e. C (Ψ) = C(1) (Ψ). However, both
C [12] and Q [13] are known to be non-additive. With-
out additivity, quantification of the trade-off is in general
infeasible.

An exception is the (unlimited) entanglement-assisted
classical capacity CE [9]. Since it has the form of quan-
tum mutual information [14, 15], CE is additive [9, 16].
One immediately hopes that the additivity can be ex-
tended to classical communication assisted by imperfect
entanglement, since entanglement is fragile. Many such
scenarios have been explored, e.g. superdense coding
(SC) over a noisy channel assisted by noisy entangle-
ment [17–22], noiseless channel assisted by noisy entan-
glement [23] and noisy channels assisted by limited pure
state entanglement [24]. However, all results are in gen-
eral non-additive as expected [25], since the above im-
perfect scenarios include the case with zero entanglement
assistance—the non-additive C.

In this paper, we obtain an additive classical capacity
formula for a noisy quantum channel Ψ assisted by re-
sources such as noisy entanglement. In the most general
formalism, Alice sends an optimized ensemble of (possi-
bly mixed) states ρiSE to Bob, with signal S through the
channel Ψ and an ancilla E pre-shared through the iden-
tity channel I. Each ρiSE is constrained by some resource,
e.g. by the entanglement between S and E. Here, similar
to SC, we consider a restricted scenario of two-step sig-
nal preparation—resource distribution and encoding (see
Fig. 1). Each ρiSE is obtained by encoding on S from a
certain state ρSE . Moreover, the resource is constrained
by the correlation between S and a “witness” W—a pu-
rification of (S,E).



2

In the resource distribution step, W is made inaccessi-
ble to both Alice and Bob. Instead of explicitly quantify-
ing the available resource (between S,E) as in Ref. 24, we
describe the resource implicitly by quantifying the corre-
lation between S and W—the unavailable resource—by
K ≥ 1 inequalities

Qk (ρSW ) ≥ yk, k ∈ [1,K] (1)

on ρSW , where each Qk (·) is a function on bipartite
states. We denote Eqn. 1 by Q (ρSW ) ≥ y. While Ref. 9
and 24 only considered pure state entanglement, the form
of resources in our case can be arbitrary by choosing
different Qk (·), e.g., noisy entanglement, cross correla-
tion [26–28] or quantum discord [29]. However, entangle-
ment measures are more meaningful to consider because:
(1) they respect the unitary equivalence of the purifica-
tion W ; (2) constraints on the entanglement between S
and W leads to constraints on the entanglement between
S and E—a property known as monogamy [26, 30–32].

Here we give an example of Eqn. 1—the quantum mu-
tual information [14, 15] I (S : W ) ≥ y, y ∈ [0, 2 log2 d]
for qudit S. When y = 2 log2 d, ρSW is pure and thus E
and S are uncorrelated. Since entanglement across mul-
tiple channel uses is also excluded here, the additivity of
our capacity does not contradict the non-additivity of C.
When y = 0, the optimum has W and S in a product
state and ρSE pure as in Ref. [24]. This gives the case
of Ref. [9]. For intermediate values of y, ρSE is mixed
and signals across multiple channel uses can be entan-
gled, thus the additivity of our capacity is non-trivial.
This example illustrates the desired property of func-
tion Qk (·)—the correlation between S,W increases when
Qk (·) increases, with the two end points corresponding
to ρSW pure and product state.

In the encoding step, Alice performs a quantum oper-
ation εx [33] with probability PX (x) on S to encode a
message x, resulting in S′ as the input to Ψ. In multiple
channel uses, the encoding is a set of classically corre-
lated separate operations—local operations and classical
communication (LOCC) [34]. ρS is constrained to be
in B (HS)—density operators on Hilbert space HS , and
the encoding is constrained to be in a certain set, i.e.,
(PX (·) , ε·) ∈ G. Upon receiving Ψ′s output B, Bob
makes a joint measurement on B and E to determine x.
The capacity of the above scenario is given as follows.

Theorem 1 (Classical capacity with limited resources
and LOCC encoding.) With resources constrained by
V ≡ { (PX (·) , ε·) ∈ G, ρS ∈ B (HS) , Q (ρSW ) ≥ y },
suppose G allows arbitrary phase flips, the classical ca-
pacity of the quantum channel Ψ is

χL (Ψ) = max
V

S

(∑
x

PX (x) Ψ ◦ εx [ρS ]

)
−
∑
x

PX (x)EΦεx⊗I [ρSW ] , (2)
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Figure 2. Schematic of M channel uses.

where Φεx is the complementary quantum operation to
Ψ ◦ εx, the entropy gain Eφ [35] of a CPTP map φ on
state ρ is defined by Eφ [ρ] ≡ S (φ [ρ]) − S (ρ) , and the
maximization is over the encoding (PX (·) , ε·) and ρSW .
Eqn. 2 is additive when the constraint has a separable
form on each channel use and the encoding is LOCC.

We make two clarifications about the theorem. First, a
schematic of Φεx is given in Fig. 1. The encoding CPTP
map εx is extended to a unitary operation Ux on S and
an environment C in the vacuum state, resulting in S′ in
state εx [ρS ] and C ′. S′ is sent to Bob through Ψ, whose
Stinespring’s dilation is a unitary operation UΨ on S′

and an environment N in the vacuum state, producing
B for Bob and an environment N ′. We define Φεx as

the CPTP map from ρS to ρ
(x)
N ′C′ , given εx. Second, by

a separable form of constraints on each channel use, we
mean constraints expressed by a set of inequalities, each
involving states only in a single channel use (see Eqn. 3).

We have given our main result “theorem 1” in a sin-
gle channel use scenario. In order to prove additivity, we
need to consider multiple channel uses (Fig. 2). Before
that, we make a few more comments. First, for general-
ized covariant channels, including covariant [36] channels
and Weyl-covariant [37] channels, Eqn. 2 can be simpli-
fied. More details are given in corollary 2.

Next, we discuss the relationships with other capaci-
ties. If G allows arbitrary encoding, one can choose to re-
place the original signal state with an optimal set of pure
states, which guarantees that χL ≥ C(1). With all encod-
ing operations unitary, we obtain another lower bound
χIL. When yk’s are maximum, χL = C(1); when yk’s are
minimum, χL = CE ; Note when arbitrary phase flips are
not allowed, the r.h.s. of Eqn. 2 upper bounds χL, and
it is still additive while χL might not be. We also point
out that Ref. 24 and our result are different in the sense
that neither of them can be reduced to the other. If εx’s
are not unitary, then the environment C ′ is never sent to
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Bob. This is different from Ref. 24, where all purification
of the signal is sent to Bob. If we restrict εx’s to be uni-
tary, the input states in Ref. 24 do not need to be related
by unitary operations, different from our scenario [42].

Finally, we emphasize the application of our results.
Our capacity formula provides an additive upper bound
for the general eavesdropper’s coherent attack [38–41] in-
formation gain for various two-way quantum key distri-
bution (TW-QKD) protocols [28, 51–60]. The constraint
in Eqn. 1 appears in security checking of TW-QKD pro-
tocols, where two parties verify properties of their state
ρSW to constrain the eavesdropper’s benefit from (S,E)
(details in corollary 3). Obtaining upper bounds for
eavesdroppers in TW-QKD is more complicated than for
one-way protocols due to the simultaneous attack on both
the forward and the backward channels. Only special at-
tacks [52–57] or general attacks in the absence of loss
and noise [58–60] have been considered. Despite this dif-
ficulty, a TW-QKD protocol called “Floodlight QKD”
has recently been shown to have the potential of reach-
ing unprecedented secret key rate (SKR) [28, 51]. Conse-
quently, our upper bound is crucial for high-SKR QKD.

Multiple channel uses.—Now we extend the single
channel use scenario to M ≥ 2 channel uses in a
non-trivial way that allows an additive classical capac-
ity (Fig. 2). We keep the same notation for all the
modes except for adding a subscript to index the chan-
nel use. For convenience, we introduce the short nota-
tion S = {Sm : m ∈ [1,M ] } for input signals, with its
states ρS ∈ B

(
H⊗MS

)
, and also W for arbitrary inacces-

sible witness and E for arbitrary ancilla. Then the initial
state (S,E,W) is pure.

The allowed encoding operations in M channel uses are
LOCC, i.e., they can be classically correlated, satisfying
some joint distribution PX (·), where X = (X1, · · · , XM )
denotes the symbols in M channel uses. Conditioned
on the message x ≡ (x1, · · · , xM ), the encoding op-
eration is εx = ⊗Mm=1εxm

. Again the CPTP map
εx can be extended as a unitary operation ⊗Mm=1Uxm

,
which takes in the signals S and the environment C =
{Cm : m ∈ [1,M ] } in the vacuum state and produces the
encoded signals S′ = {S′m : m ∈ [1,M ] } and environ-
ment C′ = {C ′m : m ∈ [1,M ] }. Each encoding opera-
tion εxm

with its own marginal distribution PXm
(·) is

still constrained to be inside the same set G.

After the encoding step, each S′m is sent through Ψ sep-
arately. The Stinespring’s dilation of Ψ⊗M takes S′ and
an environment N = {Nm : m ∈ [1,M ] } in the vacuum
state as inputs and outputs B = {Bm : m ∈ [1,M ] } for
Bob and the environment N′ = {N ′m : m ∈ [1,M ] }. Bob
decodes the message by joint measurements on (B,E),
where the pre-shared ancilla E provides resources quan-
tified by the constraint Q (ρSmW) ≥ y,m ∈ [1,M ]. One
can also consider M witnesses W = {Wm : m ∈ [1,M ] },

with constraints on each signal-witness pair,

Q (ρSmWm) ≥ y,m ∈ [1,M ]. (3)

Note that both constraints have a separate form on each
channel use, allow entanglement between Sm’s across
channel uses when y is not maximum and give the same
additive capacity formula in theorem 1 [42].

Proof of theorem 1.— With the M -channel-use sce-
nario established, we now prove theorem 1. The one-shot
classical capacity of the product channel Ψ⊗I for (S′, E)
is given by the constrained version of the HSW theorem

χL (Ψ) = max
V

{
S (ρBE)−

∑
x

PX (x)S
(
ρ

(x)
BE

)}
, (4)

where the maximization is over the encoding
(PX (·) , ε·) and the source ρSW constrained by V , and

ρ
(x)
BE = (Ψ ◦ εx)⊗ I [ρSE ], with ρBE =

∑
x PX (x) ρ

(x)
BE .

Because (S,E,W ) and N , C are pure, S (ρE) = S (ρSW );
it also follows that (B,E,W,N ′, C ′) is pure, conditioned

on x. Thus S
(
ρ

(x)
BE

)
= S

(
ρ

(x)
N ′C′W

)
. Using the sub-

additivity of von Neumann entropy on S (ρBE) and
combining the above equalities,

χL (Ψ) ≤ χUB
L (Ψ) ≡ max

V

{
S (ρB)

−
∑
x

PX (x)
[
S
(
ρ

(x)
N ′C′W

)
− S (ρSW )

]}
. (5)

Noticing that Φεx maps S to N ′C ′, Eqn. 5 can be ex-
pressed as χUB

L (Ψ) = maxV F [ρSW , (PX (·) , ε· )], where

F [ρSW , (PX (·) , ε· )] ≡ S (ρB)−
∑
x

PX (x)EΦεx⊗I [ρSW ] .

(6)
It’s subadditive since Eφ is superadditive [42].

Now we switch to the M channel uses sce-
nario to prove additivity. If we adopt con-
straint 3, the overall constraint V (M) is in a
separable form of {Vm,m ∈ [1,M ] }, where Vm ≡
{ (PXm (·) , ε·) ∈ G, ρSm ∈ B (HS) , Q (ρSmWm) ≥ y }.
This separable form and the LOCC encod-
ing allows the upper bound [42] χUB

L

(
Ψ⊗M

)
≤∑M

m=1 maxVm F [ρSmWm , (PXm (·) , ε· )] , which can be
achieved [42] by block encoding [24], leading to Eqn. 2
since ρB =

∑
x PX (x) Ψ ◦ εx [ρS ].

Special case: generalized covariant channels.— Con-
sider a d-dimensional channel Ψ, we define its covariant
group G (Ψ) := {U ∈ U(d) : ∀density matrix ρ, ∃V ∈
U(d), s.t.Ψ

(
UρU†

)
= VΨ (ρ)V †}, where U(d) is

the d dimensional unitary group. If there exists
a subset GU (Ψ) ⊂ G (Ψ) of size d2 such that∑
Ux∈GU (Ψ) UxMU†x = 0 for all d × d traceless matri-

ces M [23], we call Ψ generalized covariant. Generalized
covariant channels include covariant channels [36] and
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Weyl-covariant channels [37], and they allow a simplifi-
cation of theorem 1 [42].

Corollary 2 With arbitrary qudit state as input
and arbitrary encoding, and resources constrained by
Q (ρSW ) ≥ y, the classical capacity of a d-dimensional
generalized covariant channel Ψ is

χL (Ψ) = S (Ψ(I/d))− min
ε,ρSW ,

Q(ρSW )≥y
EΦε⊗I [ρSW ] . (7)

It is additive when the constraint has a separable form on
each channel use and the encoding is LOCC.

Note that the encoding being considered is ε plus uni-
taries in GU (Ψ). Lower bounds of χL (Ψ) are obtained
by choosing special ε; if ε = I (unitary encoding), Φε is
Ψ’s complementary channel Ψc and we recover χIL (Ψ); if
ε = R, the map from all states to a pure state inside HS ,
we recover C(1). Note here we do not require phase flips
to guarantee achievability.

For the QEC [61], Eqn. 7 can be further simplified
to χL (Ψ) = maxε,ρSW

(1− ε) (log2 d− Eεc⊗I [ρSW ]) ,
where ε is the erasure probability [42]. Let the quan-
tum mutual information be the bipartite correlation mea-
sure in Q (ρSW ) ≥ y. One can further obtain the
lower bound [42] χIL = CE (1− y/ (2 log2 d)) , where
CE = (1− ε) 2 log2 d [14]. The other lower bound is
C(1) = C = CE/2 [62]. We observe that: at y = 2 log2 d,
ρSW is maximally entangled thus ρS = I/d, χL = C(1)

while χIL = 0; at y = 0, χL = χIL = CE . These two
points are generic for all channels; when 0 < y < 2 log2 d,
it is open what ε allows χL (Ψ) to exceed max

[
χIL, C(1)

]
.

Numerical results of quantum depolarizing channel [15]
suggest similar scaling behaviour with y [42].

Application in quantum cryptography.— We apply the-
orem 1 in TW-QKD protocols to bound the general
eavesdropper Eve’s (coherent attack) information gain.
Fig. 3 shows a general TW-QKD protocol [59]. First,
party-1 prepares a pure signal-reference pair (R,W ).
Reference W is kept by party-1 and a portion of it is
used for security checking [63]. Then the signal R goes
through the forward channel controlled by Eve to party-
2. Eve performs a unitary operation on R and the pure
mode V , producing her ancilla E and S for party-2. Note
that in multiple channel uses, Eve’s unitary operation
can act on all signals jointly. Upon receiving S, party-2
uses a portion of the S for security checking [63] and en-
codes a secret key on the rest of S by a chosen scheme
(PX (·) , ε·). The security checking by party-1 and party-
2 jointly measures some functions Q (ρSW ) of the state
ρSW . Then the encoded signal goes through channel Ψ
in party-2 (e.g., device loss, amplification), leading to the
output mode B, which is sent back to party-1 through
the backward channel controlled by Eve. Finally, party-1
makes a measurement on the received mode and reference
W to obtain the secret key.

Party-1’s		
Measurement	

	
Security	checking	

	
General	unitary		

Opera:on	

Eve’s	
Measurement	

R

E

	
	

Party-2’s	
Encoding		

	
	

S

B

W
V

	
	 

Figure 3. Schematic of two-way QKD. The dotted circles
highlight the three modes in the resource distribution step.

Corollary 3 In the TW-QKD protocol given above, the
information gain per channel use of the eavesdrop-
per’s coherent attack is upper bounded by χL (Ψ) =
maxρSW

F [ρSW , (PX (·) , ε· )] , where F [·] is defined in
Eqn. 6,and the maximization is constrained by security
checking measurement result Q (ρSW ) = y and ρW fixed.

Proof. To upper bound Eve’s information gain, we give
Eve all of B. This concession to Eve will not substan-
tially increase Eve’s information gain in long distance
QKD, since the return fiber loss � 1 (e.g., ∼ 0.01 at 100
kilometers), which means almost all the light is leaked to
Eve. Eve makes an optimal measurement on all (B,E)
pairs in multiple channel uses.

In a single run of the QKD protocol, (S,E,W ) is pure
after Eve’s unitary operation, the same as the scenario
for theorem 1. Here W is the witness—kept locally by
party-1 and inaccessible to Eve; E provides the resource
as the pre-shared ancilla. The multiple QKD protocol
runs also fit in our scenario. Moreover, party-1 and party-
2 perform security checking to obtain constraints in the
form of Eqn. 1 and Eqn. 3 on ρSW . Controlled by party-2,
the encoding operations are always LOCC. Eqn. 2 upper
bounds the information gain per channel use of Eve’s
coherent attack.

Special case: Gaussian protocol.— If party-2 chooses
the Gaussian channel Ψ covariant with the unitary en-
coding, similar to corollary 2, χL (Ψ) in corollary 3 has

F [ρSW , (PX (·) , ε· )] = S (ρB)− EΨc⊗I [ρSW ] . (8)

For Gaussian protocols, the source (R,W ) and the chan-
nel Ψ are Gaussian. The security checking functions are
the mean photon number of S, and the cross-correlation
between S and W—both are functions of the covari-
ance matrix ΛSW of ρSW . As a simplified form of
Eqn. 6, Eqn. 8 is subadditive. Moreover, W is Gaussian
and passive symplectic transforms [27] over S preserve
Eqn. 8 [28], so the Gaussian extremality theorem [64] ap-
plies. With all constraints on ΛSW , Eqn. 8 is maximum
when ρSW is Gaussian. Thus for Gaussian protocols, the
collective Gaussian attack is the most powerful.

Discussion.— In future work, constraints in expecta-
tion value forms, i.e. E [Qk (ρSW )] ≥ yk, extension of
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corollary. 2 to infinite dimensional systems and explicit
evaluation of the capacity of QEC are of interest.
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