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We investigate strongly correlated non-Abelian plasmas out of equilibrium. Based on numerical
simulations, we establish a self-similar scaling property for the time evolution of spatial Wilson loops
that characterizes a universal state of matter far from equilibrium. Most remarkably, it exhibits
a generalized area law which holds for sufficiently large ratio of spatial area and fractional power
of time. Performing calculations also for the perturbative regime at higher momenta, we are able
to characterize the full nonthermal scaling properties of SU(2) and SU(3) symmetric plasmas from
short to large distance scales in terms of two independent universal exponents and associated scaling
functions.

PACS numbers: 11.10.Wx, 12.38.Mh, 11.15.Ha,

Introduction. Strongly interacting gauge field theories,
such as quantum chromodynamics (QCD), have elemen-
tary non-perturbative excitations described by Wilson
loops [1, 2]. Such extended objects play an important
role also in string theories [3] or suitable generalizations
in formulations of quantum gravity [4]. In thermal equi-
librium the Wilson loop of QCD provides an important
means to distinguish the confined “hadronic” phase from
the deconfined “quark-gluon plasma” state [5]. Despite
the well-established relevance of the Wilson loop for our
understanding of fundamental problems in vacuum or
thermal equilibrium, much less is known about its sig-
nificance for dynamical situations out of equilibrium.

In this letter we report on a scaling property of the
spatial Wilson loop that characterizes a universal state
of QCD matter far from equilibrium. This state pro-
vides an important building block for our understanding
of the early stages of ultra-relativistic heavy-ion collisions
in the limit of sufficiently high energies. In such colli-
sions a nonequilibrium plasma of highly occupied gluons
is expected to form [6, 7], with transient scaling prop-
erties [8–10] characterizing the thermalization process of
the non-Abelian plasma at weak gauge coupling. How-
ever, the notion of occupancies of individual gluons is
not gauge invariant and becomes problematic beyond the
perturbative high-momentum regime. Since the Wilson
loop is gauge invariant, it allows the investigation of non-
perturbative “infrared” properties of the strongly corre-
lated nonequilibrium system in an unambiguous way [11–
13].

Based on numerical simulations of the plasma’s real-
time dynamics in the highly excited regime, we establish
a self-similar behavior for the time evolution of the spatial
Wilson loop. The self-similarity can be fully character-
ized in terms of a universal scaling exponent and scaling
function that are time independent. Such universality
far from equilibrium is based on the existence of non-
thermal fixed points [14], which represent nonequilibrium

attractor solutions reached on a time scale much shorter
than the asymptotic thermalization time. Since the scal-
ing properties associated with the nonthermal fixed point
are insensitive to details of the underlying model and ini-
tial conditions, our results provide an important missing
piece for the determination of the nonthermal universal-
ity classes of non-Abelian gauge theories. We focus here
on relativistic non-Abelian plasmas, however, there are
important links to similar phenomena in a wide range of
applications from cosmology to cold atoms [15].

While the relevant non-perturbative long-distance
or infrared behavior of non-Abelian plasmas can be
extracted from Wilson loops, the perturbative scaling
properties at higher momenta are well described in
terms of quasi-particle excitations and can be inferred
from gauge-fixed correlations functions [11, 13, 16–18].
Combining both, we establish the full nonthermal scaling
properties of (statistically) homogenous and isotropic
Yang-Mills plasmas from short to large distance scales.
To this end, we also extend previous calculations for
the SU(2) gauge group to the case of an SU(3) gauge
symmetry underlying QCD. Our results reveal a rather
large universality class that is even insensitive to the
symmetry group of SU(2) versus SU(3).

Nonequilibrium Wilson loop. Wilson loop operators
W transport a (color-) electrically charged particle all
the way around a closed loop in space-time. Specifically,
for a particle charge in the fundamental representation
of the non-Abelian SU(Nc) gauge group with Nc colors,
the color-averaged transport along a closed line C is rep-
resented by the trace of a path-ordered (P) exponential
of the gauge field operator Aµ(x) [2],

W =
1

Nc
TrPeig

∮
C dx

µAµ(x) , (1)

where g denotes the gauge coupling, and xµ are the space-
time coordinates with µ = 0–4.
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FIG. 1: The logarithm of the spatial Wilson loop as a function
of the area at different times for gauge groups SU(Nc) with
Nc = 2 (circles) and Nc = 3 (triangles). Rescaling with the
Casimir color factor −1/CF (Nc) (see main text) leads to very
similar results both for two and three colors.

In vacuum or thermal equilibrium the closed curve C
is either taken to include the time direction, in which
case the time variable is analytically continued to imag-
inary values, or runs along spatial directions only. The
latter is called a spatial Wilson loop. In general, out
of equilibrium the time variable may not be continued
to imaginary values and we will consider spatial Wilson
loops only. The theory is then regularized on a lattice,
where the Wilson loop involves products of lattice link
variables describing the gauge degrees of freedom [2].

In equilibrium at zero temperature the expectation
value of the Wilson loop 〈W 〉eq in the pure gauge the-
ory (without dynamical quarks) decreases exponentially
with the area A as

− log〈W 〉eq = σeqA (2)

for sufficiently large A. Specifically, for the temporal-
spatial Wilson loop with imaginary times such an area-
law behavior characterizes confinement, and the asso-
ciated equilibrium string tension σeq describes the lin-
ear rise of the static quark–anti-quark potential for
large spatial separations. At zero temperature, spa-
tial Wilson loops show the same area-law behavior as
their temporal-spatial counterparts. However, for spa-
tial Wilson loops this behavior persists even in the de-
confined high-temperature phase, where it reflects non-
perturbative gauge-field correlations [20].

Since thermal equilibrium is time-translation invariant,
the expectation value 〈W 〉eq is a constant in time. In con-
trast, for the highly excited nonequilibrium plasma the
expectation value 〈W 〉(t, A) explicitly depends on time
t ≡ x0 [11–13]. A self-similar behavior of the nonequi-
librium spatial Wilson loop is described in terms of a

universal scaling exponent ζ and scaling function w as

− log〈W 〉(t, A) = w
(
(t/t0)−ζAQ2

)
, (3)

where t and A are measured in units of a suitable refer-
ence time scale t0 and momentum scale Q, respectively.
Instead of separately depending on time and spatial
area of the loop, in a self-similar regime the dynamics
only depends on the product of the area and some
(fractional) power of time. Such a non-trivial behavior
requires a significant loss of information about the
microscopic parameters of the underlying system, from
which universality originates.

Self-similarity and area law scaling at large distances.
Motivated by the Color Glass Condensate picture of
nucleus-nucleus collisions, we consider as an initial con-
dition a nonequilibrium state with energy density ε ∼
Q4/g2 describing an over-occupied gluonic state with
characteristic momentum Q [6, 7]. Details of the ini-
tial conditions are found to become irrelevant on a
short time scale tQ ∼ O(1), as demonstrated previ-
ously in SU(2) simulations of perturbative quantitives in
Refs. [13, 17, 18]. While Q is taken to be sufficiently large
such that the “running” gauge coupling g(Q) is weak due
to the phenomenon of asymptotic freedom, the system
is strongly correlated because of the non-perturbatively
large energy density.

In this case the nonequilibrium quantum dynamics can
be accurately mapped onto a classical-statistical prob-
lem, involving sampled solutions of classical Yang-Mills
equations for inhomogeneous gauge fields. The latter
can be rigorously solved using real-time lattice simulation
techniques following Refs. [11, 13, 16–18] for the case of a
non-expanding plasma [19]. The description reproduces
the underlying quantum dynamics at sufficiently early
times and breaks down at tQ ∼ g−7/2 [17, 18], when the
occupation numbers of typical perturbative momentum
modes become of order one such that genuine quantum
corrections start playing an important role. Since the
value of the gauge coupling drops out of the classical-
statistical dynamics, the precise value of g merely sets
the time scale for the range of validity of our results [9].

By virtue of the short-distance expansion for small A,

W (t, A) ' 1− g2

6Nc
A2εB(t) , (4)

where εB(t) denotes the (time-dependent) color-magnetic
energy density [21], the Wilson loop is expected to
approach unity for small enough areas. However, in
the case of a possible area-law behavior for large areas
A � 1/Q2 and sufficiently late times t � 1/Q the Wil-
son loop becomes significantly smaller than unity and
decreases monotonically as a function of A such that
− log〈W 〉(t, A) ∼ A.

In Fig. 1 we present results for the nonequilibrium Wil-
son loop at different times as a function of the spatial
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FIG. 2: The same as in Fig. 1, however, now as a function of
the time-rescaled area ∼ tζA with scaling exponent ζ = 3/5.
The collapse of the data onto a single curve demonstrates
a remarkable level of self-similarity across times, areas, and
gauge group.

area. Shown is − log〈W 〉(t, A) which approaches zero
for A = 0 and is seen to rise monotonically with the
area for A � 1/Q2. We display results for both SU(2)
and SU(3) gauge groups. After taking into account the
Casimir color factors, normalizing the data points with
CF = (N2

c − 1)/2Nc discloses a very similar behavior for
Nc = 2 and Nc = 3.

Fig. 2 shows the same data as Fig. 1, but now as a func-
tion of the rescaled spatial area ∼ t−ζA with a time scal-
ing exponent whose numerical fit value suggests ζ = 3/5.
Most remarkably, the various sets of data points at dif-
ferent times for A � 1/Q2 are found to collapse onto a
single curve to very good accuracy. This provides a strik-
ing demonstration of the self-similar scaling behavior (3).

Based on the self-similarity observed, we can obtain a
precise estimate of the scaling exponent ζ in (3) using a
statistical χ2-analysis as described in Ref. [9]. Performing
the analysis separately for Nc = 2 and Nc = 3, we obtain

SU(2) : ζ = 0.603± 0.005 (χ2)± 0.004 (sys.) ,

SU(3) : ζ = 0.604± 0.004 (χ2)± 0.005 (sys.) ,(5)

where the χ2-error estimate in the first parentheses is as-
sociated to the quality of the scaling for a fixed range of
areas and times, and the systematic uncertainties given
in the second parentheses are estimated by varying the
window in A and t in the analysis. Despite the differ-
ent structure of the SU(2) and SU(3) gauge group, the
respective infrared scaling exponents are found to agree
well with each other within errors.

The behavior of the spatial Wilson loop for large areas
reflects the long-distance or “infrared” properties of the
strongly correlated system. Similar to the large-distance
behavior of the spatial Wilson loop in a high-temperature
equilibrium plasma [20], our data clearly indicates the ap-

proach to an area law, which is illustrated by the straight
line in Fig. 2. However, since the area-law behavior oc-
curs in the self-similar regime of the nonequilibrium evo-
lution, we find that in this case a generalized scaling be-
havior

− log〈W 〉(t, A) ∼ t−ζA (6)

holds for a sufficiently large ratio of spatial area and frac-
tional power of time. Since the scaling exponent ζ is pos-
itive, data points describing larger areas and later times
map onto corresponding sets of data points for smaller
areas and times. Stated differently, to observe an area
law one has to probe larger and larger areas the later the
time becomes. In this regime, we may also use (6) to
define a time-dependent spatial string tension [11–13]

σ(t) = −∂ log〈W 〉(t, A)

∂A
∼ t−ζ (7)

that is consistent with a previous result [13] obtained in
the context of sphaleron transitions out of equilibrium.

The area law of the nonequilibrium Wilson loop is
only observed at sufficiently large ratio ∼ t−ζA, and
Fig. 2 shows significant deviations to the corresponding
straight line for smaller ratios. Since the area law is
related to a non-perturbative infrared scale given by
the spatial string tension σ, one may expect a different
scaling behavior at shorter length scales where no string
tension can be infered. However, Fig. 2 indicates that
the self-similar scaling even holds somewhat beyond the
area-law regime. We find that the same exponent ζ that
characterizes the asymptotic scaling of the string tension
describes the data well down to (t/t0)−ζAQ2/Nc & 10.

Self-similar scaling in the perturbative regime. We em-
phasize that for AQ2 . O(1) there are clear deviations
from the self-similar infrared scaling (3) observed, which
is also expected from the expansion (4) of the Wilson
loop for small areas. While the Wilson loop allows one to
extract the relevant long-distance properties in a gauge-
invariant way, it is less suitable to visualize the detailed
short-distance or ultraviolet properties. Besides gauge in-
variant observables, based e.g. on the energy-momentum
tensor, also gauge-fixed quantities provide a valid de-
scription for the perturbative higher momenta at weak
gauge coupling g. Since the gluon distribution function
f(t, p) as a function of spatial momentum p and time t has
a direct correspondence in kinetic theory, it is typically
employed to characterize perturbative scaling properties.
The distribution can be extracted from equal-time cor-
relation functions of the gauge fields 〈A∗ν(t, p)Aµ(t, p)〉
projected on the transverse polarizations in Coulomb
gauge [9].

Self-similarity of the distribution function at higher
momenta amounts to

f(t, p) = (t/t0)4β fS
(
(t/t0)βp/Q

)
, (8)
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FIG. 3: Left: The third moment of the single particle distribu-
tion ∼ p3f(p, t), which is sensitive to perturbative momenta,
at different times (t/t0)N2

c for Nc = 2 and Nc = 3. Right:
The rescaled data for β = −1/7 collapses onto a single curve
demonstrating self-similarity in the perturbative regime.

where the time-dependent normalization ∼ t4β multiply-
ing the time-independent scaling function fS arises be-
cause of energy conservation, implying that the energy
density ε ∼

∫
d3p pf(t, p) = const. The universal scaling

exponent β together with the fixed point distribution
function fS characterize the perturbative scaling regime.

The left panel of Fig. 3 shows data for the third mo-
ment ∼ p3f(t, p) of the distribution as a function of
momentum p at different times t/t0 � 1. The figure
presents results for Nc = 2 and Nc = 3. One observes
that the different data sets lie remarkably well on top of
each other for given normalized times N2

c t/t0. Moreover,
if we rescale momenta according to (8) with β = −1/7 all
data sets at different times collapse onto a single time-
independent curve as demonstrated in the right panel of
Fig. 3. For Nc = 2 the perturbative scaling behavior has
been observed previously [17, 18] and the value β = −1/7
is taken from an effective kinetic theory analysis in the
perturbative regime [22]. Performing the numerical anal-
ysis separately for Nc = 2 and Nc = 3, we obtain

SU(2) : β = −0.145± 0.017 (χ2)± 0.002 (sys.) ,

SU(3) : β = −0.141± 0.020 (χ2)± 0.002 (sys.) .(9)

The fixed point distribution fS has a universal shape,
and the results indicate a rather large universality class
that is also insensitive to the symmetry group of SU(2)
versus SU(3).

In the perturbative regime one expects a hierarchy of
scales, which appear at different orders of the weak cou-
pling g. In an equilibrium plasma at temperature T , the
“hard” momenta are of order T , while the color electric
and magnetic screening scales are of order gT and g2T ,
respectively. In the nonequilibrium plasma, we character-
ize the typical momenta Λ(t) of hard excitations in terms
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Both the two- and three-color cases clearly exhibit the same
scaling Λ2(t) ∼ t2β and m2

D(t) ∼ t−2β for β = −1/7.

of a local gauge invariant operator definition constructed
from a ratio of covariant derivatives of the field strength
tensor and the field strength itself [9, 18]. Expressed
perturbatively, the hard scale is defined as the ratio of
moments of the single particle distribution [17, 18]

Λ2(t) ' 2

3

∫
d3p p3f(t, p)∫
d3p p f(t, p)

∼ t−2β , (10)

which explicitly shows the scaling of this quantity with
the exponent β. Here the last equality is obtained from
inserting (8) into the momentum integral of (10). Nu-
merical results are presented in the upper panel of Fig. 4,
which clearly exhibits the same value of the scaling ex-
ponent β both for two and three colors.

At softer momenta, the Debye scale mD is related to
the electric screening scale in plasma. The leading per-
turbative contribution may be expressed in terms of the
distribution function as [17, 18]

m2
D(t) = 4g2Nc

∫
d3p

(2π)3
f(t, p)

p
∼ t2β . (11)

Its scaling behavior is demonstrated in the lower panel
of Fig. 4.

Finally, the soft magnetic screening scale in the
plasma may be related to the spatial string tension or
∼
√
σ. Following a naive power counting, one may be

tempted to argue from (10) and (11) that
√
σ should

behave ∼ t3β . However, this scale concerns the deep
infrared where typical occupancies are of order f ∼ 1/g2

in our case, such that a perturbative description is not
valid in this regime. Instead, we find according to (7)
that

√
σ ∼ t−ζ/2. With the values (5) and (9) we note

that −3β is more than 40% larger than ζ/2, which is
well beyond our statistical uncertainties.
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Conclusions. Nonthermal fixed points provide an
important means to classify and describe the dynamical
evolution of strongly correlated systems out of equi-
librium. While perturbative scaling properties at high
momenta can be understood in terms of self-similar
scaling of the single-particle distribution, the notion of
quasi-particles with a well-defined momentum becomes
inappropriate at soft momenta. Instead, the non-
perturbative long-distance behavior is well captured by
the elementary excitations of extended objects described
by gauge-invariant Wilson loops. Combining both
descriptions allows us to establish the full nonthermal
scaling properties of the plasma from short to large
distance scales. Performing an unprecedented numerical
effort in this respect, we are able to characterize the
self-similar scaling properties by two independent uni-
versal exponents, ζ in the non-perturbative infrared and
β in the perturbative ultraviolet regime, and associated
scaling functions. We find a remarkable universality
between SU(2) and SU(3) Yang-Mills plasmas, which
exhibit the same characteristic scaling behavior far
from equilibrium even in the deep infrared. In view of
the significant differences in their thermal equilibrium
critical properties, where the SU(2) symmetric theory
exhibits long-distance scaling in the Ising universality
class and the SU(3) theory is discontinuous at the
thermal phase transition, our results point to a rather
large universality class for the nonequilibrium scaling
phenomenon. Since universal properties are independent
of the details of the underlying microscopic system, and
the nonthermal behavior is to some extent even insensi-
tive to the symmetry group, this opens the possibility of
unexpected links between seemingly disparate physical
systems far from equilibrium.
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