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We demonstrate experimental implementation of robust phase estimation (RPE) to learn the
phase of a single-qubit rotation on a trapped Yb+ ion qubit. We show this phase can be estimated
with uncertainty below 4 · 10−4 radians using as few as 176 total experimental samples, and our
estimates exhibit Heisenberg scaling. Unlike standard phase estimation protocols, RPE neither
assumes perfect state preparation and measurement, nor requires access to ancillae. We cross-
validate the results of RPE with the more resource-intensive protocol of gate set tomography.

INTRODUCTION

As quantum computers grow in size, efficient and ac-
curate methods for calibrating quantum operations are
increasingly important [1–4]. Calibration involves esti-
mating the values of experimentally tunable parameters
of a quantum operation and, if incorrect, altering the
controls to fix the error.

When these tunable parameters are incorrectly set, it
causes the system to experience coherent errors. Coher-
ent errors (versus incoherent errors) are more challeng-
ing for error correcting codes to correct [5, 6], making it
harder to reach fault-tolerant thresholds [7–9]. Hence it
is important to correct these types of errors in order to
build a scalable quantum computer. While recent tech-
niques using randomized compiling [10] mitigate the ef-
fects of coherent errors, removing as much of the coherent
errors as possible still gives the best error rates.

Calibration can be challenging without accurate state
preparation and measurement (SPAM) estimates [11, 12].
Thus proper calibration of quantum operations will re-
quire robust protocols, that is, protocols that can accu-
rately characterize gate parameters without highly accu-
rate initial knowledge of SPAM.

A new technique for calibrating the phases of gate op-
erations is robust phase estimation (RPE) [13]. RPE can
be used to estimate the rotation axes and angles of single-
qubit unitaries. Moreover, it is easy to implement (the
sequences required are essentially Rabi/Ramsey experi-
ments), simple and fast to analyze, and obtains accurate
estimates with surprisingly small amounts of data.

RPE has advantages over standard robust characteri-
zation procedures when it comes to the task of calibra-
tion. RPE can estimate specific parameters of coherent
errors, whereas randomized benchmarking, while robust,
can only estimate the magnitude of errors [14–18]. While
compressed sensing approaches can withstand SPAM er-
rors [19, 20], they do not have the Heisenberg scaling
RPE achieves. There is a simple analytic bound on the
size of SPAM errors that RPE can tolerate (namely less
than 1/

√
8 in trace distance), unlike the robust Bayesian

approach of Wiebe et al., whose error tolerance is less

well-understood. [21]. Lastly, RPE is extremely efficient
compared to robust protocols that provide complete re-
constructions of error maps, like randomized benchmark-
ing tomography [22] and gate set tomography (GST) [23].

Like many other phase estimation procedures, RPE
achieves Heisenberg scaling [13]; that is, the estimate er-
ror scales inversely with the number of times the quan-
tum operation in question is applied. However, unlike
many other protocols, it requires no entanglement such
as squeezed states or NOON states [24–30], requires no
ancillae [25, 31, 32], and is non-adaptive [33–36].

Finally, compared to many tomography and parame-
ter estimation protocols, the post-experiment analysis of
RPE is strikingly simple. There are no Bayesian updates
[21, 36, 37], no optimizations [19, 23, 38], and no fits to
decaying exponentials [16, 22]. Instead, post-processing
can be represented with a dozen lines of pseudo-code,
with the most complex operation being an arctangent
[39].

Here, we provide the first published experimental
demonstration of RPE and investigate its performance.
We use RPE to experimentally extract the phase (rota-
tion angle) of a single-qubit unitary. Because we don’t
know the true values of the parameter, we benchmark the
estimate by comparing to GST, which gives a robust, ac-
curate, and reliable estimate, but which requires much
more data [23].

We see experimental evidence of Heisenberg scaling in
RPE, and we attain an accuracy of 3.9 · 10−4 radians in
our phase estimate using only 176 total samples. Com-
pared to GST, we find that RPE requires orders of mag-
nitude fewer total gates and samples to achieve similar
accuracies. However, when experiments involving long
sequences are not accessible, we find GST potentially has
better performance than RPE. Nonetheless, due to its
minimal data requirements, ease of implementation and
analysis, and robust estimates of coherent errors, RPE is
a powerful tool for efficient calibration of quantum oper-
ations.
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PRELIMINARIES

We consider estimating the parameter α from the fol-
lowing single-qubit gate (the “X gate”):

X̂π/2+α = exp [−i ((π/2 + α) /2) σ̂X ] , (1)

where σ̂X is the Pauli X operator and α is the rotation
error in the X gate. There is no off-axis component to
the X gate, as we choose the X axis of the Bloch sphere
to be the rotation axis of the X gate [46]. α is a parame-
ter that experimentalists can typically control with ease.
(While we do not do so here, RPE may also be used to
estimate the rotation angle and and axis misalignment of
a rotation gate about an approximately orthogonal axis.
[47])

In reality, implemented quantum gates will not be uni-
tary, but instead will be completely positive trace pre-
serving (CPTP) maps. Nonetheless, these CPTP maps
will have rotation angles with errors analogous to α, and
in the Supplemental Material, we show RPE can extract
such angles [39]. For the rest of the paper, with slight
abuse of notation, we will use α to refer to this more
general CPTP map rotation error.

We use RPE and GST to extract α. Fig. 1 gives a
schematic description of GST and RPE circuits. RPE
circuits are essentially Rabi/Ramsey sequences; they con-
sist of state preparation ρ, assumed to be not too far in
trace distance from |0〉〈0|, followed by repeated applica-
tions of the X gate, followed by a measurement operator
M , which is assumed to be close in trace distance to
|1〉〈1|.

We use “additive error” to denote the maximum bias in
the outcome probability of any single RPE experimental
sequence. This bias can be due to SPAM errors and
incoherent errors in the gates. RPE can tolerate additive
error as long as it is less than 1/

√
8.

For GST, each sequence consists of a state preparation
ρ, followed by a gate sequence Fi to simulate an alternate
state preparation. Next a gate sequence gk is applied
repeatedly. Finally, the measurement M is preceded by a
gate sequence Fj to simulate an alternative measurement.
We refer to Fi and Fj as state and measurement fiducials,
respectively, and gk as a germ [39].

For both RPE and GST, running increasingly longer
sequences produces increasingly accurate estimates. We
use L to parameterize the length of the sequence, as in
Fig. 1. We run sequences with L ∈ {1, 2, 4, 8, . . . , Lmax},
where Lmax is chosen based on the desired accuracy. In
RPE, we repeat the gate of interest either L or L + 1
times. In GST, we implement all possible combinations
of state fiducials, measurement fiducials, and germs, with
the germ repeated bL/|gk|c times, where |gk| is the num-
ber of gates in gk and b·c denotes the floor function.

We employ the following notation to keep track of ex-
perimental resources. N denotes the number of repeti-
tions (samples taken) of each sequence, and is set to be

the same for all sequences in a single RPE or GST exper-
imental run [48]. The total number of unique sequences
is a function of the maximum sequence length Lmax and
is denoted by Q. For RPE, it is given by

Q(Lmax) = 2 (1 + log2 Lmax) . (2)

For GST, Q(Lmax) is approximately equal to
396 (1 + log2 Lmax); see [23] for details. The total
number of experimental samples taken is a function of
both N and Lmax and is denoted by S:

S(N,Lmax) = N ·Q(Lmax). (3)

(We will sometimes drop the arguments from Q and S if
clear from context.)

RPE successively restricts the possible range of the
estimated phase using data from sequences with larger
and larger L. Inaccuracies result when the procedure re-
stricts to the wrong range. For larger values of Lmax,
there are more rounds of restricting the range, and thus
more opportunities for failure. By increasing N when
Lmax increases, we can limit this probability of failure.
Likewise, a large additive error makes it easier to incor-
rectly restrict the range, but again, taking larger N can
increase the probability of success. The interaction be-
tween accuracy, N , Lmax, and additive errors is shown in
Fig. 2. This graph shows theoretical upper bounds of the
root mean squared error (RMSE) of RPE for fixed sam-
ple size N [49]. Fig. 2 shows that, given an additive error
δ, there exist good choices for N and Lmax, provided that
δ < 1/

√
8.

A protocol has Heisenberg scaling when the RMSE of
its estimate of a gate parameter scales inversely with the
number of applications of a gate. RPE provably has
Heisenberg scaling [13], and GST numerically exhibits
Heisenberg-like scaling [23]. In this paper, we empirically
look for scaling in accuracy and precision that scales as
1/Lmax. This is a good proxy (up to log factors) for
Heisenberg scaling.

In practice, experimentalists care less about Heisen-
berg scaling than about the resources (e.g. N and Lmax)
required to achieve a desired accuracy. Assuming time is
the key resource, if experimental reset time is long com-
pared to gate time, S quantifies the experimental cost.
On the other hand, if gate time is long compared to ex-
perimental reset time, then Lmax is the dominant factor.

EXPERIMENTAL RESULTS

We implement GST and RPE on a single 171Yb+ ion
in a linear surface ion trap. The qubit levels are the
hyperfine clock states of the 2S1/2 ground state: |0〉 =
|F = 0,mF = 0〉, |1〉 = |F = 1,mF = 0〉. We initialize
the qubit close to the |0〉 state via Doppler cooling and
optical pumping; we measure in the computational basis
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FIG. 1: (Color online) (a) RPE and (b) GST
experimental sequences. Each sequence starts with the
state ρ and ends with the two-outcome measurement
M . (a) An RPE sequence consists of repeating the gate
in question either L or L+ 1 times. (b) In GST, a gate
sequence Fi is applied to simulate a state preparation
potentially different from ρ. This is followed by bL/|gk|c
applications of a germ—a short gate sequence gk of
length |gk|. Finally, a sequence Fj is applied to simulate
a measurement potentially different from M .
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FIG. 2: (Color online) Analytic upper bounds on the
RMSE of the RPE phase estimate. Because RPE is
potentially biased, the RMSE does not go to zero in the
limit of infinite N , but instead, approaches a floor of
π/(2Lmax). Larger additive error δ produces a larger
bias, and thus require larger N and larger Lmax to
achieve a small RMSE. For example, N = 16 is not
large enough to reach the floor for Lmax = 1024, but
increasing N to 370 we easily saturate the bound for
most values of δ.

(approximately) via fluorescence state detection [40]. See
[23] for experimental details. We used the open-source
GST software pyGSTi for numerical analysis, extending
its capabilities to include RPE functionality [41].

We take N = 370 samples of each GST and RPE se-
quence, and use L ∈ {1, 2, 4, . . . , 1024}. (For details, see
Gate Sequences in [39].) For the GST dataset, this yields
Q = 2, 347 unique sequences and S = 868, 390 total sam-
ples, while the RPE dataset has Q = 22 unique sequences
and S = 8, 140 samples.

Looking at Fig. 2, we see N = 370 is larger than nec-
essary for RPE with Lmax = 1024 for additive error less
than ∼ 0.25. To simulate experiments with small N , we

randomly sample (without replacement) from the experi-
mental dataset, so that the new, subsampled dataset has
N << 370 samples per sequence.

We use several methods to characterize the experi-
mental accuracy of RPE. First, we apply the analytic
bounds on RMSE of Fig. 2. We also compare our sub-
sampled RPE estimates to the GST estimate. Unlike
RPE, GST is an unbiased estimator [42], so we ex-
pect that as we increase N , the RMSE will decrease as
1/
√
N . Using the N = 370 dataset for GST, we estimate

α = (6.4 ± 4.9) · 10−5; the error bars denote a 95% con-
fidence interval derived using a Hessian-based procedure
(see [23] for details). On the other hand, using all RPE
data we estimate α = 1.0 · 10−4, with an RMSE upper
bound of π/(2 · Lmax) ≈ 1.5 · 10−3 (where this bound
comes from Fig 2 with N = 370, assuming our additive
error is less than 0.25; this assumption is borne out in
the next section).

While the RPE estimate is consistent with the GST re-
sult, the accuracy is significantly lower, and we thus take
α0, the full data estimate from GST, to be the “true”
value of α for the purposes of benchmarking RPE. In
particular, throughout this paper, we calculate experi-
mental RMSE by comparing the mean estimate from 100
subsampled datasets to α0.

Heisenberg Scaling from RPE

To look for Heisenberg scaling in RPE estimates, we
perform RPE on 100 subsampled datasets for Lmax ∈
{1, 2, 4, . . . , 1024} with N = {8, 32}. We see Heisenberg-
like scaling in the experimental RMSE in Fig. 3. We
also plot π/(2Lmax), which is the analytic upper bound
if sufficient samples are taken to compensate for additive
error. We see that in practice, the analytic bounds can
be pessimistic. Moreover, we see that while the exper-
imental RPE accuracy is sensitive to N , increasing N
to 32 from 8 does not dramatically improve the RMSE,
improving the scaling to 0.200/Lmax from 0.331/Lmax.
Instead, as expected, large increases in accuracy are ob-
tained by moving to larger Lmax. This Heisenberg-like
scaling is especially important for regimes where the time
to implement the gate sequence is long relative to SPAM
time.

We believe our experimentally derived bounds are sig-
nificantly better than our analytic bounds in part because
our system is well-calibrated. The analytic bounds give a
worst-case analysis that accounts for bias caused by ad-
versarial additive error, but RPE is effectively unbiased
for our system, up to the accuracy we achieve.
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Comparison to GST

Because RPE can be biased, increasing N cannot im-
prove the RMSE below π/(2Lmax) in the worst case (see
Fig. 2 and [13]). However since GST is unbiased, it al-
ways benefits from increasing N.

We investigate this effect in Fig. 4. We plot the RMSE
for experiments with fixed Lmax = 1024 and varying N ∈
{8, 16, 32}. Analytic bounds for RPE are derived using
the same method as in Fig 2. Experimental bounds for
GST and RPE are derived from comparing the estimates
of 100 subsampled datasets to α0.

While the analytic RPE bounds do not improve with
increasing N , the subsampled RPE and GST datasets
show standard quantum limit scaling. We expect this for
GST, because GST is unbiased. In the case of RPE our
experimental system happens to have very small additive
error, and so is only very slightly biased. In this case, we
expect to see improving estimates with increasing N until
our accuracy is about the same size as our bias. Fig. 4
tells us that for systems with relatively large additive
error, where large N is feasible but large Lmax is not,
GST can provide more accurate results.

However, we see in Fig. 4 that GST pays a substantial
cost relative to RPE when S is the figure of merit. In
Fig. 5, we compare the values of S that RPE and GST
each require to achieve a desired accuracy, by analyzing
100 subsampled datasets with fixed N = 8 and varying
Lmax ∈ {1, 2, 4, . . . , 1024}. We see that RPE can achieve
similar accuracy to GST while using orders of magnitude
fewer total samples. As demonstrated both in Figs. 4
and 5, choosing N = 8 and Lmax = 1024 yields an RPE
estimate of α with an RMSE of 3.9 ·10−4; this costs only
S(8, 1024) = 176 total experimental samples.

For our system, acquiring the entire RPE and GST
datasets took 10.8 minutes and 12.1 hours, respectively,
and total experimental time scales linearly with N . Thus
we note that had our actual data acquisition rate been
N = 8, it would have taken 14 s to acquire that RPE
dataset and about 15.5 minutes to acquire the GST
dataset. As for analysis time, a single RPE dataset can
be analyzed in about 0.05 s on a modern laptop. GST
analysis takes about 20 s [50]. All datasets and analysis
notebooks are available online [43].

CONCLUSIONS

We show that robust phase estimation successfully
estimates the phases of single-qubit gates, yielding re-
sults that are consistent with the full tomographic re-
construction of gate set tomography, and also exhibits
Heisenberg-like scaling in accuracy. In particular, an
individual phase may be estimated with a root mean
squared error of 3.9 ·10−4 with as few as 176 total exper-
imental samples.
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FIG. 3: (Color online) RMSE versus Lmax for RPE
estimates of α from 100 subsampled datasets of size
N = 8 and N = 32. While analytic bounds are at best
π/(2Lmax), we see this can be pessimistic. When the
additive errors, which can bias the RPE estimate, are
sufficiently small, increasing N improves RMS accuracy.
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FIG. 4: (Color online) Scaling of RMSE of estimates of
α as a function of total samples S(N,Lmax), with
Lmax = 1024. For the analytic curves, we resample with
N ∈ {8, 16, . . . , 256}, while for the experimental curves
we restrict ourselves to N ∈ {8, 16, 32} (as higher
resampling rates would introduce nontrivial correlations
between datasets). For each curve, N increases
incrementally from left to right. Analytic bounds are
derived using the techniques of Fig. 2. Experimental
data points take the RMSE of 100 subsampled datasets
for both RPE and GST. While the analytic bounds
converge to π/2048, we see standard quantum limit
scaling (i.e., error scaling ∝ 1/

√
S) of RPE

experimental estimates. As discussed in the text, this is
because our experimental device has very low additive
error, and thus the RPE estimates are essentially
unbiased, and can achieve greater accuracy with
increasing number of samples. GST estimates also
exhibit standard quantum limit scaling.

Hence, RPE is a strong choice for diagnosing and cal-



5

RPE 
GST

R
M

S 
Er

ro
r

10−3

10−2

10−1

Total samples S(N=8,Lmax)
101 102 103 104

FIG. 5: (Color online) RMSE for RPE and GST
estimates of α as function of total number of total
samples S(N,Lmax) using 100 subsampled datasets. As
opposed to Fig. 4, here we fix N = 8 and vary Lmax.
Each sequential data point corresponds to setting
Lmax ∈ {1, 2, 3, . . . , 1024}. RPE achieves the same level
of accuracy as GST using far fewer resources.

ibrating single-qubit operations. It would be interesting
to investigate whether the techniques of RPE can be ap-
plied to assessing other errors in single-qubit gate oper-
ations in a fast and accurate manner.
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