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We report on the unusual behavior of the in-plane thermal conductivity (κ) and torque (τ)
response in the Kitaev-Heisenberg material α-RuCl3. κ shows a striking enhancement with linear
growth beyond H = 7 T, where magnetic order disappears, while τ for both of the in-plane symmetry
directions shows an anomaly at the same field. The temperature- and field-dependence of κ are far
more complex than conventional phonon and magnon contributions, and require us to invoke the
presence of unconventional spin excitations whose properties are characteristic of a field-induced
spin-liquid phase related to the enigmatic physics of the Kitaev model in an applied magnetic field.

PACS numbers:

Low-dimensional spin systems display a multitude of
quantum phenomena, providing an excellent forum for
the exploration of unconventional ground states and their
exotic excitations. The Kitaev model [1] has attracted
particular attention, both theoretically and experimen-
tally, because it possesses an exactly solvable quantum
spin-liquid (QSL) ground state and has possible realiza-
tions in a number of candidate materials [2–5]. Thermal
transport measurements have proven to be a powerful
tool for elucidating the itinerant nature of QSLs [6, 7],
as a result of their high sensitivity to the low-energy ex-
citation spectrum, and in fact studies of low-dimensional
insulating quantum magnets have revealed very signif-
icant contributions to heat conduction from unconven-
tional spin excitations [8–18].

Magnetic insulators containing 4d and 5d elements
combine electronic correlation effects with strong spin-
orbit coupling (SOC) to generate complex magnetic in-
teractions. In the Kitaev model, nearest-neighbor spin- 1

2
entities on a two-dimensional (2D) honeycomb lattice in-
teract through a bond-dependent Ising-type coupling of
different spin components, whose strong frustration leads
to a QSL ground state with emergent gapless and gapped
Majorana-fermion excitations [1]. The physical real-
ization of this uniquely anisotropic interaction requires
strong SOC, which creates effective jeff = 1

2 moments
with Kitaev-type coupling in the honeycomb iridate com-
pounds A2IrO3 (A = Na or Li) [19, 20]. Despite its
weaker SOC, the 4d honeycomb material α-RuCl3 con-
tains similar spin-orbit-entangled moments, and thus has
emerged as another candidate system for Kitaev-related
physics [5, 21–23].

In this Letter, we present in-plane thermal conductiv-
ity (κ) and magnetic torque (τ) studies of single-crystal
α-RuCl3 samples. Below the magnetic ordering temper-

ature, TC , a pronounced minimum of κ and an accompa-
nying torque anomaly at H = Hmin ' 7 T occur due to a
field-induced phase transition from the “zig-zag” ordered
state [21, 24] to a spin-disordered phase. The abrupt and
linear rise of the low-T κ at H > Hmin indicates that this
field-induced spin liquid (FISL) contains a massless exci-
tation with Dirac-type dispersion, while the strong renor-
malization of the phonon contributon at all temperatures
suggests a broad band of unconventional medium-energy
excitations. These results serve to fingerprint the possi-
ble Kitaev physics of the FISL in α-RuCl3.

Single crystals of RuCl3 were synthesized by vacuum
sublimation [25], as described in Sec. SI of the Supple-
mentary Material (SM) [26]. κ measurements were per-
formed with a one-heater, two-thermometer configura-
tion in a 3He refrigerator and external magnetic fields up
to 14 T. Cernox and RuOx resistors were used as ther-
mometers for the respective temperature ranges T > 2 K
and 0.3 < T ≤ 15 K, and were calibrated both separately
and in-situ under the applied field. Both the thermal cur-
rent (−∇T ) and the field were oriented in the crystalline
ab-plane, with H applied either parallel or perpendicular
to ∇T . We found little difference in κ for the two ori-
entations, and all results shown below were measured in
the ∇T ‖ H ‖ ab geometry, other than Fig. 1(b), where
∇T ⊥ H. τ was determined from capacitance measure-
ments between the ground plane and a BeCu cantilever.
Its angular dependence was measured in two geometries,
one in which H was rotated within the ab-plane (φ rota-
tion) and one with H rotated out of plane (θ rotation).

Figure 1(a) shows κ(T ), in fields µ0H = 0 and 14
T, for three α-RuCl3 samples. Qualitatively, the de-
pendence of κ on both T and H is the same in each
case, and we focus on these general features. Quantita-
tively, our samples show differences in peak heights and
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FIG. 1: (a) In-plane thermal conductivity, κ(T ), shown up to
100 K for Samples 1, 2, and 3 at µ0H = 0 T (squares) and
14 T (triangles). Solid lines are a guide to the eye. (b) Low-
temperature detail of κ(T ) for a range of H values, shown for
Sample 1. (c) κ(T ) at low T for Sample 2.

widths, which we relate to their age and defect content
in Sec. SI of the SM [26]. On cooling at zero field (ZF),
κ0(T ) = κ(T,H = 0) has a broad peak near 25 K and
decreases down to the magnetic ordering temperature,
TC ' 6.3 K, which is identified both from the upturn in
κ and from the magnetic susceptibility (data not shown).
This value of TC is identified clearly in all our crystals,
testifying to their high as-grown quality, with no contam-
ination from structures of different layer stackings [27].
For T < TC , κ0(T ) shows a weak maximum before de-
creasing to zero. κ(T, 14 T) differs dramatically from
κ0(T ) at all temperatures below 60 K. Its peak at inter-
mediate T is suppressed, broader, and lies at a higher
temperature, whereas below T ' 12 K it has a strong
low-T peak that is completely absent from κ0(T ).

Focusing on this low-T regime, Figs. 1(b) and 1(c)
show κ(T ) at constant fields H = 0, 5, 7, 8.5, 10, 12,
and 14 T. Because the ordered state has a large magnon
gap [28], the weak low-T , low-H feature is in fact an
enhanced phonon contribution. This is suppressed by in-
creasing field, and the minimum marking TC is visible
up to H = 5 T. At H = Hmin ' 7 T, both the phonon
enhancement and the minimum disappear. Further in-
crease of H causes the appearance of the low-T peak,
whose height grows linearly with H − Hmin, leading to
rounded maxima around 5 K at 14 T. We have collected
detailed low-T data (0.3 < T < 3 K) at H > Hmin for
Sample 2 [Fig. 1(c)] and find that these do not display
an activated form; the alternative of a power-law form
demonstrates clearly that this feature is the contribution
of a gapless excitation.

The non-monotonic evolution with H and the strong
high-field enhancement of κ are clearly evident in the
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FIG. 2: (a) κ(T,H) for Sample 1, represented by color con-
tours. Horizontal lines correspond to field sweeps measuring
κ(H) at fixed T . (b) Relative thermal conductivity differ-
ence, ∆κ(H)/κ0, shown for the fixed values of T highlighted
in panel (a); curves are presented with constant offsets.

isothermal H-dependence. Figure 2(a) presents κ(H,T )
for Sample 1 as a color contour map, showing the min-
imum region around Hmin and maxima at high T or
high H. The fractional change of κ(H), ∆κ/κ0 =
(κ(H)−κ0)/κ0, is shown in Fig. 2(b) for a range of T val-
ues. κ(H) and ∆κ(H)/κ0 show an initial decrease, before
turning over at Hmin and increasing rapidly. Hmin(T )
remains around 7 T for T < TC , but becomes rapidly
larger as T is increased beyond TC , making the minima
shallower until at T = 20 K Hmin is pushed outside our
measurement range. Our measured value Hmin ' 7 T for
T < 10 K coincides with the critical field (HC) for the
field-induced phase transition observed in bulk magneti-
zation [24] and specific-heat measurements [29]. Further,
the magnetization in this field range is far from satura-
tion [24, 29] and it is safe to conclude that the system is
only weakly spin-polarized above Hmin.

In general, κ contains multiple terms whose effects can
be difficult to separate. For α-RuCl3, the presence and
location of Hmin are fundamental properties of the phase
diagram and four further, distinctive features provide
clues about the primary contributions to κ. These are (i)
the local minimum in κ(T ) occurring at TC at small H
[Figs. 1(b) and 1(c)], (ii) the slow decrease of κ(H) when
H increases from zero [Fig. 2(b)], (iii) the properties of
the low-T peak in κ(T ) atH > Hmin [Figs. 1(b) and 1(c)],
and (iv) the suppression and shift of the intermediate-
temperature contribution by the applied field [Fig. 1(a)].

Features (i) and (ii) can be explained within a conven-
tional framework. The magnetic anisotropy of RuCl3 re-
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FIG. 3: In-plane torque response as a function of H, mea-
sured at selected values of T with φ = −69± 2◦. Right inset:
measurement configuration. Left inset: φ-dependence of τ at
fields of 4 T and 7 T; φ1 = −64◦ and φ2 = 28◦ exhibit 90◦

symmetry (φ = 0◦ is chosen arbitrarily).

sults in a magnon gap of 1.7 meV [28] in the ordered state,
and thus no spin-wave contribution can be expected. In
many systems, κ decreases rapidly below the Curie-Weiss
temperature, TCW, due to the scattering of phonons by
spin fluctuations, which reduces the phonon mean free
path, lp. Such spin-phonon scattering is thought to have
a strong impact on the phonon contribution to heat con-
duction in SOC materials [30, 31]. In RuCl3, this effect
is visible below TCW ≈ 25 K [21] at ZF [Fig. 1(a)]. How-
ever, spin fluctuations are suppressed due to the onset
of magnetic order, i.e. below T = TC . Thus the weak
low-T , low-H feature, whose vanishing causes the pro-
nounced local minimum at TC in ZF (i), is caused by the
enhancement of κ expected from the improved lp. By the
same token, the weak decrease of κ with T for H < Hmin

(ii) is a consequence of the applied field suppressing the
magnetic order, and with it the improved lp.

Before discussing features (iii) and (iv), for further per-
spective concerning the phases below and above Hmin we
have performed magnetic torque measurements on our
RuCl3 single crystals. We rotate H both within the ab-
plane (Fig. 3, right inset) and out of it [discussed in
Sec. SII of the SM [26]]. The torque generated in the
presence of a magnetization, M , is ~τ = µ0MV ×H, with
µ0 the permeability and V the sample volume. The ther-
modynamic quantity τ is highly sensitive to magnetic
anisotropy [32, 33]. Measurements performed on three
crystals, of different shapes and sizes, all returned results
very similar to those shown in Fig. 3.

In the ab-plane, τ(φ) displays the 90◦ symmetry ex-
pected due to the monoclinic structure of α-RuCl3 [25,
27] (Fig. 3, left inset). At two specific angles, φ1 and φ2,
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FIG. 4: (a) (H,T ) phase diagram of α-RuCl3 inferred from
the magnitude of Mτ measured at φ ' −69◦ (color scale).
White circles indicate Hmin as a function of T , cyan circles the
position of local minima in Mτ (H), and green squares the lo-
cations of inflection points appearing in ∆κ/κ0(H) [Fig. 2(b)].

τ → 0 independent of the magnitude of H, and Fig. 3
shows τ(H) measured near φ1 (results near φ2 are qual-
itatively similar). At low T , τ(H) with H < Hmin ex-
hibits a strikingly non-monotonic form. This complexity
ceases abruptly at H > Hmin. At T > TC , the sizes
both of τ and of the anomaly drop significantly, indicat-
ing strongly that this behavior is due solely to the pres-
ence of magnetic order. Such anomalous H-dependence
is not surprising in a Hamiltonian as anisotropic as the
Kitaev-Heisenberg model, and a rich variety of complex
field-induced ordering patterns, with corresponding off-
diagonal components of the magnetic susceptibility ten-
sor, has been suggested [34, 35].

We define the torque magnetization, Mτ = τ/H, which
in certain geometries is closely related to the real mag-
netization (as discussed in Sec. III of the SM [26]). Fig-
ure 4 shows Mτ (H,T ) in the form of color contours [36].
The overlaid points showing the characteristic quantities
Hmin(T ) and the minima of Mτ divide this effective H-T
phase diagram naturally into three distinct regions. Re-
gion I, at T < TC and H < Hmin, is where spontaneous
magnetic order exists and is characterized by the strongly
non-monotonic τ(H) and decreasing κ(H) (dκ/dH < 0).
Here also the inflection points of κ(H) at H < Hmin

[Fig. 4(a)] coincide with the local maxima of τ (Fig. 3).
In Region II, dκ/dH < 0 while T > TC . Region III
is characterized by dκ/dH > 0, but the derivative falls
rapidly as T crosses TC , leading us to divide it into LT–
Region III (T < TC), where we observe the strongest
enhancement of ∆κ/κ0, and HT–Region III (T > TC),
where Hmin moves rapidly to higher values.



4

Features (iii) and (iv) in κ are respectively the key
properties of Regions LT–III and HT–III. Before invok-
ing exotic physics, the conventional explanations should
be exhausted. Modelling all the contributions of phonons
and coherent spin excitations to κ is a complicated
problem [8–15, 17, 18]. The first complexity for α-
RuCl3 is the quasi-2D structure, which would require a
currently unavailable anisotropic 3D phonon fit. Con-
ventional phonon thermal conductivity in a magnetic
insulator is ascribed to four contributions, point de-
fects, grain boundaries, Umklapp processes, and magnon-
phonon resonant scattering [37–39]. The last has been
used successfully to describe the H-dependence of fea-
tures observed in κ in several low-dimensional materials
[10, 40, 41]. However, its effect is usually to generate a
minimum at the resonance energy, causing a double-peak
structure in κ(T ) where only the lower peak has strong
H-dependence [8, 10, 41]. Such behavior is qualitatively
different from α-RuCl3, and in fact we are not aware of
a mechanism for a strong field-induced enhancement of
κ, of the type we observe in Figs. 1(b) and 1(c), other
than a coherent spin excitation [12–14, 16, 42]. However,
α-RuCl3 at H > Hmin has no magnetic order, as demon-
strated by the absence of features in the susceptibility
[21] and specific heat [29], and verified by neutron scat-
tering [43] and nuclear magnetic resonance studies [44].
Thus it has no conventional gapless mode, and this is
why we conclude that feature (iii) must attributed to an
unconventional excitation of the FISL.

Turning to exotic solutions, the proximity of the zig-
zag ordered state to a Kitaev QSL at ZF [22] is strongly
suggestive. However, we note that an applied field de-
stroys many of the exotic properties of the Kitaev QSL
[1], that the FISL is partially spin-polarized, that the
Heisenberg terms have non-trivial effects [22], and that
ideal honeycomb symmetry is broken in monoclinic α-
RuCl3 [27, 45]. It is nevertheless instructive to recall
that the Kitaev model has an exact solution in terms
of Majorana fermions, one of which is massless with lin-
ear dispersion [1] while the others are massive. Spin ex-
citations are Majorana pairs, or equivalently Majorana
modes pinned to static fluxes [46], and are all massive.
Although one recent numerical study reports a QSL state
above a critical field in a model for RuCl3 [47], it was
found to be gapped. The low- and medium-energy spin
excitations of RuCl3 at ZF have been mapped by recent
inelastic neutron scattering studies [28, 48]. In addition
to the gapped spin waves, one finds a broad continuum of
excitations centered around 5 meV [48]. At finite fields,
no unambiguous information is yet available, other than
the κ signals we measure. For their interpretation, it is of
crucial importance that the low-T excitations contribut-
ing to κ above Hmin are gapless and that their density of
states increases linearly with H [feature (iii)]. These are
the properties of a cone-type dispersion and are thus the
same behavior as the massless Kitaev QSL mode.

Feature (iv) is the striking field-dependence of κ(T )
for TC < T < 60 K [Fig. 1(a)]. In this range κ should
be dominated by phonons, whose contributions are H-
independent. The presence of an incoherent medium-
energy continuum of anisotropic spin excitations [48] may
cause a direct contribution to κ or a suppression due to
spin-phonon scattering. Our results contain no evidence
for direct contributions, as there is no abrupt change in
κ at Hmin and the change in the high-T peak position
indicates energy shifts far beyond the scale of H. By
contrast, our results contain several features characteriz-
ing a strong suppression of phonon contributions. First,
κ at ZF cannot be fitted within the conventional frame-
work, indicating that anomalous phonon scattering is sig-
nificant even at H = 0. Second, the continuum affects
the phonon contributions to κ over a broad range of T
[Fig. 1(a)], reflecting the broad energy range observed in
Ref. [48]. Third, scattering becomes considerably more
effective at a field of 14 T. Because the field scale for
a significant reconstruction of the continuum should be
the Kitaev energy, estimated as K ≈ 7 meV [23, 28], it
is clear that some rearrangement must take place at the
field-induced transition to the FISL. However, the lack of
abrupt changes in κ at Hmin indicates that only a small
fraction of the continuum turns into the massless mode
[feature (iii)], while the majority of its spectral weight
remains in a broad continuum at finite energies; we com-
ment here that thermal fluctuations may cause at least
as strong a rearrangement of the continuum over the T
range of our experiment as field effects do. Thus from
the evidence provided by κ(H,T ), the FISL does appear
to possess both the primary excitation features of the Ki-
taev QSL, namely a Dirac-type band and a finite-energy
continuum. For this reason we refer to them as proximate
Kitaev excitations (PKEs).

To summarize the nature of heat conduction in α-
RuCl3 in the context of Fig. 4, κ in Region I is controlled
by low-T phonon contributions, decreasing slowly as the
system is driven towards the FISL because lp is reduced.
A similar trend continues in Region II, where the increas-
ing thermal population of phonons, as well as thermally
excited paramagnons, contribute to κ. In LT–Region III,
the rapid increase of κ with H reflects the presence of the
massless PKE. In HT–Region III, the minimum of κ(H)
moves to high fields (Fig. 4) and there are contributions
to κ both from phonons and from the massive PKEs,
where the primary effect of the latter is the systematic
suppression of the former with increasing H, which drives
up the crossover field [Hmin(T )] from Region II.

To conclude, we have investigated the highly non-
monotonic thermal conductivity and the torque magne-
tization response of the 2D honeycomb-lattice material
RuCl3. We infer a field-induced phase transition to a
state, the FISL, of no magnetic order and no simple spin
polarization. The low-energy excitations of this spin-
disordered ground state cause a dramatic enhancement of
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κ at low temperatures, while its gapped excitations sup-
press the phonon contribution at higher temperatures,
and do so more effectively at higher fields. Although
our results neither prove nor disprove that the FISL is
closely related to the Kitaev QSL state, they set strong
constraints on the nature of its excitations and thus of
its theoretical description.
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