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We study fixed points of the easy-plane CPN−1 field theory by combining quantum Monte Carlo
simulations of lattice models of easy-plane SU(N) superfluids with field theoretic renormalization
group calculations, by using ideas of deconfined criticality. From our simulations, we present evidence
that at small N our lattice model has a first order phase transition which progressively weakens as N
increases, eventually becoming continuous for large values of N . Renormalization group calculations
in 4− ε dimensions provide an explanation of these results as arising due to the existence of an Nep
that separates the fate of the flows with easy-plane anisotropy. When N < Nep the renormalization
group flows to a discontinuity fixed point and hence a first order transition arises. On the other
hand, for N > Nep the flows are to a new easy-plane CPN−1 fixed point that describes the quantum
criticality in the lattice model at large N . Our lattice model at its critical point, thus gives efficient
numerical access to a new strongly coupled gauge-matter field theory.

Introduction: The emergence of gauge theories in quan-
tum spin Hamiltonians has played an important role
in theoretical descriptions of novel magnetic phenom-
ena over the past few decades. Recently, by exploit-
ing advances in simulation algorithms for quantum anti-
ferromagnets [1], the connections between magnetism
and gauge theories have facilitiated controlled numeri-
cal access to otherwise poorly understood strongly cou-
pled gauge theories; the most prominent example is
the study of N -component scalar electrodynamics (also
called CPN−1) that emerges right at the direct con-
tinuous transitions between magnetic and translational-
symmetry breaking “valence bond solid” (VBS) states in
SU(N) magnets, a phenomena popularly called “decon-
fined critical points” (DCP) [2].

Two prominent physical systems where the ideas of
DCP apply are lattice superfluids and antiferromagnets,
each giving rise to its own variant of the CPN−1 theory.
In the context of superfluids (SF), the appropriate de-
scription is a “easy-plane” CP1 field theory [2, 3] which
applies to the superfluid SF-VBS critical point in S = 1/2
XY models [4]. The easy-plane case was studied intensely
intially since a self-duality suggested that this could be
the best candidate for a DCP [5]. Subsequent numer-
ical work has concluded however that this transition is
first order, both in direct discretizations of the field the-
ory [6, 7] as well as in simulations of the quantum anti-
ferromagnet [8]. The easy-plane case is in sharp contrast
to the case of antiferromagnets with SU(N) symmetry,
where striking quantitative agreement between detailed
field theoretic calculations [9–12] and numerical simula-
tions has been demonstrated [13–15].

The persistent first order behavior in the XY-like mod-
els and its striking difference from the continuous tran-
sitions found in the SU(N) symmetric case has been un-
explained so far, despite the central role of both systems
in our understanding of the DCP phenomena. In this
work we address this issue by formulating an extenstion
of the “easy-plane” XY symmetry of SU(2) to general

SU(N). Our approach allows for a study of the first
order transition for arbirary N using both lattice simula-
tions of an easy plane-SU(N)[ep-SU(N)] model as well as
renormalization group (RG) calculations on a proposed
easy-plane-CPN−1 [ep-CPN−1]: We find the first order
transition in the ep-SU(N) models found for N = 2 in
previous work persists for larger N . A careful analysis
however shows that the first order jump quantitatively
weakens as N increases. RG ε-expansion calculations
find that the field theory hosts a new ep-CPN−1 fixed
point only for N > Nep, suggesting that the transition
can eventually become continuous. Consistent with this
result, we find that the transition in our lattice model
turns continuous around N ≈ 20. For N = 21 we provide
a detailed scaling analysis of our numerical data that con-
firms a continuous transition in a new universality class.
Our work clarifies and significantly extends the discus-
sion of the DCP phenomena in easy-plane magnets and
its relation to the symmetric case.

Easy-plane model & field theory: We introduce a family
of bipartite ep-SU(N) spin models that are extensions of
the quantum XY model to larger N akin to those studied
by us recently [8]. They are written in terms of the T ai ,
the fundamental generators of SU(N) on site i:

Hep = −J1⊥
N

∑
a,〈ij〉

′
T ai T

a∗
j −

J2⊥
N

∑
a,〈〈ij〉〉

′
T ai T

a
j . (1)

the
∑′

denotes the sum on a is restricted to the N2 −
N off-diagonal generators (a sum on all a would give
the SU(N) model). The 〈ij〉 (〈〈ij〉〉) indicates nearest
(next nearest) neighbors on the square lattice which are
on opposite (same) sublattices and in conjugate (same)
representations. Hep is an easy plane deformation of the
SU(N) J1-J2 model [13], it has a global U(1)N−1×SN
(we call this ep-SU(N)) in addition to time reversal and
lattice symmetries. As we shall show the model harbors
in its phase diagram the SF-VBS transition for all N >
5. Hep is Marshall positive for J1⊥, J2⊥ > 0 [16]; we



2

0.02 0.03 0.04 0.05

m 2

0.000

0.002

0.004

0.006

0.008

P
(
m

2
)

SU(6)

SU(8)

SU(10)

0.02

0.03

0.04

0.05

m
2

FIG. 1. First order transitions for moderate values of N .
The upper panels shows MC histories (arbitrary units) of the
estimator for m2

⊥ for N = 6 and 10. The bottom panel
shows histograms of m2

⊥ taken at L = 50 for J2/J1 ≡ g =
0.250, 0.876, 1.58 for N = 6, 8, 10 respectively clearly show
double peaked behavior. The double peaked beahvior per-
sists in the T = 0 and thermodynamics limit [16].

simulate it with stochastic series Monte Carlo on L × L
lattice at an inverse temperature β [17].

To obtain the effective field theory (Lep) for Eq. 1, we

start with the CPN−1 model (Ls) proposed to describe
DCP in anti-ferromagets with SU(N) symmetry [2, 3]
and deform it using an anisotropy operator (Lv), so that
Lep = Ls + Lv with,

Ls =
∑
α

|(∂µ − ieAµ)zα|2 +
1

2
(~∇× ~A)2

+ r
∑
α

|zα|2 +
u

2

(∑
α

|zα|2
)2

Lv =
v

2

∑
α

|zα|4, (2)

where the zα are N complex fields coupled to a U(1)
gauge field, Aµ. The term v breaks the SU(N) symmetry
of Ls to the same ep-SU(N) symmetry found above for
Eq. 1. It is known from the large-N expansion that for
N larger than some finite Ns, in d = 3 the CPN−1 field
theory Ls has a finite coupling fixed point (FP) [18, 19].
Below we will address the fate of these FPs for Lep.

Weakening first-order transition: We begin with a nu-
merical study of Eq. (1). We have shown [8] that the
ep-SU(N) models map to a certain loop model. We can
hence calculate two useful quantities to probe magnetic
ordering: the average of the square of the spatial winding
number of the loops 〈W 2〉 and a normalized magnetic or-

der parameter m2
⊥ = 1

(1− 1
N )L2

∑
a

′ ∑
i,j T̃

a
i T̃

a
j [where the

sum on a is on the off-diagonal generators, i and j are
summed on the entire lattice and T̃ = T (T ∗) on the A(B)

20 30 40 50 60

L

1.00

1.05

1.10

1.15

〈 W2
〉 /〈 W

2
〉 L

=
20

(c)

N=6

N=10

N=16

N=21

0.23 0.24 0.25 0.26 0.27
g

0

1

2

3

4

5

〈 W2
〉

SU(6)

(a)L=12

L=16

L=24

L=32

L=48

L=64

5.8 6.0 6.2 6.4 6.6 6.8
g

SU(21)

(b)L=12

L=16

L=24

L=32

L=48

L=64

L=96

FIG. 2. Scaling of the spatial winding number square 〈W 2〉.
(a) Crossing for N = 6. (b) Crossing for N = 21. (c) Value
at the L and L/2 crossing of 〈W 2〉 for a range of N normal-
ized to the crossing value at L = 20 for each N . For the
smaller N a clear linear divergence is seen as expected for a
first-order transition (ergodicity issues limit the system sizes
here). For larger N a slow growth is observed very similar
to what has been studied in detail for the SU(2) case and
interpreted as evidence for a continuous transition with two
length scales [20], like we have here. The data was taken at
β = 6L which is in the T = 0 regime [16].

sublattice], which although off-diagonal in the |α〉 basis
can be estimated by measuring a particular statistical
property of the loops [16]. We have normalized m2

⊥ so
that the maximum value it can take is 1 for all N , allow-
ing for a meaningful comparison across different N .

Previously we found that the SF-VBS transtion is first
order for N ≤ 5 [8]. In Fig. 1 we present data that shows
the first order behavior persists as N is increased up to
N = 10. A hitherto unanswered but important ques-
tion is whether the first order jump weakens as N in-
creases. We find evidence in favor of this assertion, since
the histogram peaks get closer as N is increased. Beyond
N ≈ 16 we have found no evidence for double peaked
histograms. To carry out a more quantitative analysis,
which has been popular in the study of the DCPs [6],
we turn to 〈W 2〉 (which is related to the spin stiffness as
βρs). At a first order transition one expects a linear di-
vergence of 〈W 2〉 as one approaches the phase transition
since ρs stays finite. Any sub-linear behavior indicates
that the transition is continuous since ρs vanishes in the
thermodynamic limit [21]. In Fig. 2 we present a study
of the crossing of 〈W 2〉. We find clear evidence for the
expected linear behavior at moderate values of N . As N
is increased beyond about N ≈ 16 we find a very slow
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FIG. 3. RG flows of the ep-CPN−1 model for (a) Ns < N <
Nep and (b) N > Nep at leading order in 4 − ε dimensions
obtained by numerical integration of Eq.(3). Fixed points are
shown as bold dots, we have only labeled a few significant
to our discussion. The flows in the v = 0 plane have been
obtained previously [18] and include the “s” fixed point that
describes DCP in SU(N) models (red dot). While the flows
have many FPs [16], a DCP of the ep-SU(N) spin model must
have all three eigen-directions in the e2-u-v irrelevant. For
N < Nep there are no such FPs; there is hence a runaway flow
to a first order transition. For N > Nep two FPs emerge: “m”
is multicritical and “ep” is the new ep-DCP that describes the
SF-VBS transition (yellow dot). The gaussian fixed point at
the origin has been labeled “g” for clarity. See [16] for further
details.

growth of 〈W 2〉 inconsistent with linear behavior but con-
sistent with what has been found in SU(N) models, where
the transition is believed to be continuous [20, 21]. This
study provides clear evidence that the first-order jump
decreases as N increases, possibly becoming continuous.

RG analysis: The weakening of the first-order SF-VBS
transitions at larger N raises important questions: Is the
transition first order for all N or does it become contin-
uous beyond some finite Nep? If the transition becomes

continuous: Is it a new universality class of an ep-CPN−1
or is the anisotropy irrelevant resulting in CPN−1 criti-
cality for the “easy-plane” models?

To answer these questions, we compute the RG flows
of Eq. (2) in 4− ε dimensions. We will work in the crit-
ical plane where r = 0, the r operator being strongly
relevant at tree level will continue to be relevant in the
ε-expansion. To leading order (assuming u,v and e2 are
O(ε)), we find the following RG equations,

de2

dlns
= εe2 − N

3
e4,

du

dlns
= εu− (N + 4)u2 − 4uv − 6e4 + 6e2u,

dv

dlns
= εv − 5v2 − 6uv + 6e2v, (3)

which for v = 0 reduce to the well known RG equations
for the CPN−1 model [18, 22]. Given the relevance of r, a
generic critical point of ep-CPN−1 would be a fixed point
of Eq. (3) with all three eigen-directions in e2-u-v-space
irrelevant. The FP structure and flows of Eq. 3 (shown
in Fig. 3) change at two values of N : Ns and Nep with
Ns < Nep. For N < Ns [not shown] there are no FPs
with e2 6= 0 and a generic flow runs away to a first order
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FIG. 4. Correlation ratios close to the phase transition for
N = 21. (a) The SF order paramater ratio, Rm2

⊥
shows good

evidence for a continuous transition with a nicely convergent
crossing point of g = 6.505(5). (b) RVBS shows a crossing
point that converges to the same value of the critical cou-
pling. We note however that the crossing converges much
more slowly (see text). The inset shows the convergence of
the crossings points of L and L/2 of SF and VBS ratios. Note
their convergence to a common critical coupling indicating a
direct transition. The data shown in Fig. 4 and 5 was taken
at β = 6L which is in the T = 0 regime [16].

transition. For N > Ns a v = 0 FP “s” appears, which
describes the SU(N) DCP phenomena, but at which v
is always relevant. There are two distinct fates of the
flow with v 6= 0: For Ns < N < Nep [see Fig. 3(a)]
v causes a runaway flow to a discontinuity FP, i.e. the
phase transition turns first order. On the other hand, for
N > Nep [see Fig. 3(b)] a new fixed point “ep” appears.
At this FP all eigen-directions in the e2−u− v space are
irrelevant and hence r is the only relevant perturbation.
“ep” hence describes a generic continuous deconfined SF-
VBS transition in models of the form Eq. (1). In the
leading order of the ε-expansion we have Ns ≈ 183 [18]
and Nep ≈ 5363 (independent of ε). From previous work
on the symmetric case, it is well known that these leading
order estimates are unreliable in d = 3: Indeed, in the
next to leading order, Ns becomes negative for ε = 1 [23,
24]. Ultimately the values of Ns,ep must be obtained from
numerical simulations. Nonetheless, it is expected that
the basic structure of fixed points and flows obtained here
using the ε-expansion are reliable. Based on our study, we
make the following conclusions: Even in a regime where
there is a symmetric fixed point (N > Ns), for Ns < N <
Nep, easy-plane anisotropy will drive the DCP first-order.
For N > Nep a new FP emerges. Easy-plane anisotropy



4

20

30

40

50

60

70

80

m
2
L

1
+
η

(a)

400 300 200 100 0 100 200 300 400

(g−gc )L1/ν

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

R
m

2

(b)

L=24

L=32

L=48

L=64

L=96

6.4

6.5

6.6

6.7 g c
(L

)

(c)

Rm 2

m 2

W2

1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6

1/
ν(
L

)

(d)

0.00 0.04

1/L

0.55
0.60
0.65
0.70
0.75

η(
L

)

(e)

FIG. 5. Data collapse for the SF order parameter at N = 21.
(a) Finite size data collapsed to m2

⊥ = L−(1+ηSF)M[(g −
gc)L

1/ν ] with parameters gc=6.511, ν=0.556 (1/ν = 1.795),

η=0.652. (b) Collapse of ratio Rm2
⊥

= R[(g − gc)L1/ν ] with

parameters gc=6.518, ν=0.582 (1/ν = 1.719). The side pan-
els shows convergence of estimates for various quantities from
the collapse of L and L/2 data: (c) the critical coupling
gc = 6.505(1) from pair-wise collapses of m2

⊥ and Rm2
⊥

, as

well as crossings of 〈W 2〉 (see Fig. 2) for data. Panel (d)
shows 1/ν(L), which we estimate to converge to 1/ν = 2.3(2).
Likewise we estimate η(L) to converge to η = 0.72(3), which
is shown in panel (e).

then results in a continuous SF-VBS transition in a new
ep-CPN−1 universality class.

Study of fixed point: Having presented evidence from
the ε-expansion that with increasing N the transition
should turn continuous and in a new universality class,
it is of interest to study the scaling behavior at large N .
We will focus on N = 21 where we have found no evi-
dence for first order behavior on the largest system sizes
that we have access to. We construct dimensionless ra-
tios Rm2

⊥
and RVBS which go to 1(0) in their respective

ordered (disordered) phases. Fig. 4 shows our data for
N = 21. The large correction to scaling observed in the
VBS data are expected: according to the DCP theory the
VBS anomalous dimension ηVBS ∝ N which causes the
leading VBS correlation functions to decay very rapidly
at this large value of N . This makes it hard to separate
the leading and sub-leading behavior on the available sys-
tem sizes. Since the SF data shows a good crossing, we
carry out a full scaling analysis in Fig. 5. The data for
both m2

⊥ and Rm2
⊥

collapse nicely without the inclusion

of corrections to scaling [25, 26]. They lead to consistent
values of critical couplings and scaling dimensions lend-
ing support for a continuous transition ep-CPN−1 fixed

point emerging at large N .

In conclusion, we have studied new lattice models for
deconfined criticality with easy-plane SU(N) symmetry.
We find persistent first order behavior in these lattice
models at small to intermediate N , in sharp contrast to
the continuous transitions found in the symmetric mod-
els for the same range of N . As N increases the first
order easy-plane transition weakens and eventually be-
comes continuous. Our RG flows provide a way to under-
stand both the first-order and shift to continuous transi-
tions: The easy-plane anisotropy is always relevant at the
symmetric CPN−1 fixed point, for N < Nep there is no
easy-plane fixed point and hence the anisotropy drives
the transition first order. For N > Nep a new fixed
point emerges resulting in a continuous transition in a
new “easy-plane”-CPN−1 universality class which is an
example of a strongly coupled gauge-matter field theory.
Our lattice model provides a sign-free discretization of
this field theory that is amenable to efficient numerical
simulations. We leave for future work the determina-
tion of a precise value of Nep, comparisons of the univer-
sal quantities with easy-plane large-N expansions, and a
comparative study of the scaling corrections between the
easy-plane and symmetric cases. It would be of inter-
est to complement our work with studies of field theories
such as Eq. (2) using the conformal bootstrap [27].
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