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Filling-enforced Dirac semimetals, or those required at specific fillings by the combination of
crystalline and time-reversal symmetries, have been proposed in numerous materials. However,
Dirac points in these materials are not generally robust against breaking or modifying time-reversal
symmetry. We present a new class of two-dimensional Dirac semimetal protected by the combination
of crystal symmetries and a special, antiferromagnetic time-reversal symmetry. Systems in this class
of magnetic layer groups, while having broken time-reversal symmetry, still respect the operation of
time-reversal followed by a half-lattice translation. In contrast to 2D time-reversal-symmetric Dirac
semimetal phases, this magnetic Dirac phase is capable of hosting just a single isolated Dirac point
at the Fermi level, one that can be stabilized solely by symmorphic crystal symmetries. We find that
this Dirac point represents a new quantum critical point, existing at the boundary between Chern
insulating, antiferromagnetic topological crystalline insulating, and trivial insulating phases, and
we discuss its relationship with condensed matter fermion doubling theorems. We present density
functional theoretic calculations which demonstrate the presence of these 2D magnetic Dirac points
in FeSe monolayers and discuss the implications for engineering quantum phase transitions in these
materials.

Since the discovery of graphene [1–4] and the recogni-
tion of the unique role of its Dirac cones in transport [5–7]
and quantum criticality [8, 9], there has been an ongoing
effort to reproduce aspects of Dirac semimetal physics
in new materials and to predict new variants. Through
this search, many new semimetallic phases have been pre-
dicted, characterized, and in some cases observed in real
materials, including phases hosting 3D Dirac, Weyl, Dou-
ble Dirac, Spin-1 Weyl, or line nodes near the Fermi en-
ergy [10–28].

In these semimetallic phases, the nodal features are
stabilized by the combination of time-reversal and spa-
tial symmetries. In particular, for the phases protected
by nonsymmorphic symmetries, or those invariant un-
der the combination of a point group operation and a
fractional lattice translation, certain nodal features are
always present at space-group-specific fillings [29–31].
These semimetals, known as “filling-enforced semimet-
als,” are prevented from being insulators at these fill-
ings by the combination of Kramers’ theorem and non-
symmorphic symmetries, and therefore display bands in-
separably bound together in space-group-specific num-
bers. For example, for the simple 2D four-band mod-
els previously presented in Ref. 32, glides and two-fold
screws forced bands to tangle together in groups of four,
such that at filling ν = 2 the system always displayed
Weyl or Dirac points. Unlike the Dirac points in band-
inversion semimetals Na3Bi and Cd2As3 [16, 17], filling-
enforced nodal features can be found in all time-reversal-
symmetric materials [33].

In this letter, we present the first examples of filling-
enforced Dirac semimetals in systems with magnetic
symmetries. We find that the combination of three-

dimensional layer group crystal symmetries and an an-
tiferromagnetic time-reversal symmetry protects a sin-
gle bulk Dirac point in a two-dimensional crystal, and
we present four-band tight-binding models demonstrat-
ing this physics. Unlike in time-reversal-symmetric Dirac
semimetals, a single magnetic Dirac point is permitted
to exist as the only feature at the Fermi energy. Fur-
thermore, unlike the antiferromagnetic Dirac points in
Ref 34, which are topological objects created through
band-inversion transitions, this 2D magnetic Dirac point
is filling-enforced : it cannot be gapped without lowering
the symmetry of the particular magnetic layer group that
protects it.

We further show that this magnetic Dirac point, like
its time-reversal-symmetric relative, represents the quan-
tum critical point between topologically distinct insulat-
ing phases. For bulk perturbations which preserve the
antiferromagnetic time-reversal operation, this magnetic
Dirac semimetal sits at the quantum phase boundary be-
tween a trivial insulator, a Chern-trivial antiferromag-
netic topological crystalline insulator, and a nontrivial
Chern insulator with winding C = ±1.

We present density functional theoretic (DFT) calcula-
tions demonstrating the presence of these magnetic Dirac
points in FeSe monolayers, and discuss the implications
for engineering topological phase transitions in magnetic
Dirac semimetals. Finally, we discuss the stability of this
new magnetic Dirac fermion in the context of disorder,
interactions, and condensed matter fermion doubling the-
orems.

In time-reversal-symmetric, filling-enforced Dirac
semimetals, Dirac nodes at time-reversal-invariant mo-
menta (TRIMs) are protected by the algebraic relation-
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FIG. 1. (a) The lattice with I, {Mz|0 1
2
}, and T̄ = {T | 1

2
1
2
}

with spin alignment ±ŷ. Red and green indicate sites above
and below the plane. (b) The band structure generated by
the tight-binding model with these symmetries (Eq. 2). Bands
are two-fold-degenerate by the combination of I and T̄ . Pic-
tured are the top four bands of an eight-band model, which
are split from the bottom bands by a very large antiferro-
magnetic interaction. The symmetries of this magnetic layer
group necessitate that groups of four bands meet in Dirac
points at M for fillings ν ∈ 4Z + 2.

ship between two spatial symmetries and time-reversal
symmetry [31, 32]. Specifically, at the k · p level, a four-
fold point degeneracy may be protected by two spatial op-
erations A and B and an antiunitary operation T̄ whose
irreducible representations satisfy the algebra:

{A,B} =
[
A, T̄

]
=

[
B, T̄

]
= 0,

A2 = ±B2 = −T̄ 2 = +1 (1)

As magnetically ordered systems can still possess a
time-reversal-like antiunitary symmetry, they are also ca-
pable of satisfying these relations, and in fact, may do
so utilizing an expanded set of crystal symmetry oper-
ations. Specifically, when T̄ is plain time-reversal sym-
metry T , the above relations may only be satisfied if
at least one of A or B is a two-fold non-symmorphic
operation [31]. However, at T̄ -invariant momenta in
magnetically-ordered systems, or those for which T̄ =
{T |t}, where t is a fractional translation, commutation
relations between T̄ and spatial symmetries may be al-
tered, allowing Eq. 1 to be satisfied using only symmor-
phic symmetries.

To have a composite time-reversal-like symmetry T̄
with a fractional lattice translation, a system must be
composed of sites that, while internally time-reversal-
broken, have time-reversed partners elsewhere in the unit
cell. The simplest example of this is a two-site antiferro-
magnet, where the up spins on the A sites are the time-
reverses of the down spins on the B sites. To construct
a model with this symmetry, we first consider systems
with four sublattices of s-orbitals, for a total of eight
bands. We then turn on an antiferromagnetic potential,
assumed to be much stronger than other hopping and
energy terms, such that the system splits into two effec-
tively four-band systems, each with one spin per sublat-
tice. The subsystem above the plane can therefore be

described using two pairs of sublattices A/B. Each pair
individually respects T̄ , and the two pairs are related to
one another by additional spatial symmetries, as shown
in Fig. 1(a), for which t =

(
1
2
1
2

)
. In this model, there are

also additional spatial symmetries inversion I and glide
reflection Mz. Representing the A/B degrees of freedom
by σ and the prime/nonprime degrees of freedom by τ ,
the k · p model of the M point (kx = ky = π) reads:

I = iτy,Mz = iτxσy, T̄ = iτzσyK

HM =
[
t0τx +

(
tSO2 + tSO3

)
τzσz +

(
tSO3 + tSO4

)
τzσx

]
kx

−
[(
tSO2 − tSO3

)
τzσz +

(
tSO3 − tSO4

)
τzσx

]
ky

and can be generated by the tight-binding model

H =t0 cos

(
kx
2

)
τx

+
[
tSO1 sin (kx − ky) + tSO2 sin (kx + ky)

]
τzσz

+

[
tSO3 sin

(
kx − ky

2

)
+ tSO4 sin

(
kx + ky

2

)]
τzσx

(2)

for which we have enumerated all symmetry-allowed
terms up to second-nearest-neighbor hopping.

If these two spatial symmetries were combined with
regular time-reversal-symmetry T , Dirac points at M and
Y would result, as shown in Ref. 32. However, for an anti-
ferromagnet with T̄ symmetry there is only a Dirac point
at M, as in the little group at Y the translation t anti-
commutes with both spatial operations and the algebra
in Eq. 1 is no longer satisfied.

To characterize this Dirac point as a quantum critical
point, we examine symmetry-lowering perturbations that
gap to insulating phases. In the k ·p theory, five matrices
preserve T̄ while breaking one of the spatial symmetries:
τy, τxσx, τxσy, τxσz, and τz. Adding mass terms pro-
portional to these matrices results in either insulating or
Weyl semimetal phases, depending on the band ordering
elsewhere in the BZ. Unlike in time-reversal-symmetric
Dirac semimetals, the resulting gapped phases in these
systems cannot be evaluated by a Z2 Quantum-Spin-Hall
(QSH) invariant. Furthermore, as T̄ 2 = −1 on only a line
in the bulk BZ, this system also cannot realize the inher-
ently 3D antiferromagnetic topological insulating phase
described by Mong, Essin, and Moore in Ref. 35. How-
ever, we find that this does not exclude the presence of
2D topological magnetic crystalline phases; i.e., those
surface-protected by T̄ .

Consider the (11), (11̄), (1̄1), and (1̄1̄) edges, which
preserve T̄ . While one surface TRIM, Γ̄, has a Kramers’
degeneracy from T̄ 2 = −1, the other TRIM, Z̄, does not.
Inducing a distortion potential proportional to the mass
term τy results in a bulk-insulating phase, and, for ap-
propriately chosen terminations, edge states resembling
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FIG. 2. For the tight-binding model in Eq. 2, introducing an
asymmetry in the hopping between A/A′ and B/B′ sites may
result in edge states on T̄ -preserving surfaces. (c),(d) The
(11) edge of a ribbon with different signs of the Mz-breaking
term τy in the k ·p at M. The edge in (c), represented by red
lines in (a) and (b) hosts surface states, shown in the inset
band structure. The edge in (d), represented by black lines
in (a) and (b), is fully gapped. Flipping the sign of τy is
equivalent to applying C2z rotation, which exchanges the two
crystalline phases.

QSH edge modes appear in the gap and meet in a linearly
dispersive Kramers’ pair at Γ̄ (Fig. 3(c)). The surface
bands at Z̄, however, are singly degenerate and free to
move, as T̄ 2 = +1 and Kramers’ theorem is not enforced.
This T̄ -preserving gapped system behaves like an array of
Su-Schrieffer-Heeger chains: τy effectively dimerizes the
A and B sublattices, leaving an edge state on unpaired
terminations. Changing the sign of τy causes dimers to
switch partners, converting edge states between paired
and unpaired (Fig. 2). The terms τxσx, τxσy, and τxσz
also correspond to dimerizing distortions, and produce
the same behavior as τy, though when only weakly ap-
plied they result in Weyl nodes (or a nodal loop in the
case of τxσy, which preserves Mz) (Fig. 3(a)). Finally,
the term τz, which corresponds to a staggered on-site po-
tential, is only capable of gapping to a trivial insulator,
though when weakly induced it also produces an inter-
mediate Weyl semimetal phase (Fig. 3(b)).

We can separate crystalline insulating effects from
the overall bulk topology by examining the (10) T̃ -
breaking edge in the bulk-T̃ -preserving insulating phases
above. Though inducing some of the previous mass terms
leads this low-symmetry edge to display chiral modes

(a) (b)

(c) (d)

FIG. 3. (a) Perturbations corresponding to τxσx (along with
τxσy and τxσz) result in nodal phases (left) or bulk gapped
phases (right), depending on perturbation strength. These
cases are associated with dimerizations of the lattice, analo-
gous to those in Fig. 2, and may produce edge states in the
same fashion (b). τz represents a staggered on-site poten-
tial and leads to a pair of Weyl points for small magnitudes
(left), two pairs as the magnitude increases (center), and, ul-
timately, an insulating phase once the Weyl points annihilate
(right), but never produces edge states, independent of ter-
mination. (c) The chiral edge states resulting from breaking
T̄ while preserving the spatial symmetries; left- and right-
moving states sit on opposite edges and connect the valence
and bulk manifolds, consistent with bulk topology |C| = 1.

(d) Band structure of the (10) T̃ -breaking edge of the T̄ -
bulk-preserving perturbed system in Fig 2. Each edge hosts
a single, directional, trivial edge state, indicating that the
T̄ -preserving bulk-insulating phases are Chern-trivial C = 0.

(Fig.3(d)), these modes do not connect the bulk and va-
lence manifolds, and are therefore non-topological. This
indicates that the antiferromagnetic crystalline insulat-
ing phases in Fig. 2 are Chern-trivial (C = 0).

The magnetic Dirac point can also be gapped by break-
ing T̄ . Applying a mass term σy at M breaks T̄ while
preserving both spatial symmetries, and results in the
development of a single topological chiral mode on each
edge (Fig 3(c)), implying a Chern-insulating bulk with
winding |C| = 1.

We also find that turning on the same antiferromag-
netic potential in an otherwise symmorphic system also
results in the enforcement of related magnetic Dirac
points. In Fig. 4(a), we show a lattice generated only with
antiferromagnetic time-reversal T̃ and symmorphic rota-
tions C2x and C2y. At M this combination of symmetries
still satisfies the algebra in Eq. 1, and bands there con-
sequently form similar magnetic Dirac points composed
of two non-degenerate cones (Fig. 4(b)). Tight-binding
models for this symmorphic system are detailed in the
supplemental material.

For both magnetic Dirac systems, electron fillings ν ∈
4Z + 2 are required for the Fermi energy to lie at the
Dirac point. In the first model, the presence of multiple
nonsymmorphic symmetries disallows fillings of ν = 2, 6,
as they would imply atoms with fractional numbers of
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FIG. 4. (a) The lattice with C2x, C2y, and T̄ = {T | 1
2

1
2
} with

sping alignment ±ŷ. The red and green sites sit above and
below the plane, respectively; the gray open-circle site lies
in the plane. The symmetries of this magnetic layer group
require that bands, shown in (b), while singly degenerate, still
group together in multiples of 4 and meet at M in Dirac points
with non-degenerate cones. Systems in this magnetic layer
group are therefore filling-enforced magnetic Dirac semimetals
at fillings ν ∈ 4Z+2. These bands were obtained from a tight-
binding model detailed in the supplemental material.

electrons. However, derived phases for which one of the
nonsymmorphic symmetries is broken are still achievable.
Appropriately chosen adatoms or substrates may be able
to dope the system while only weakly perturbing it, main-
taining an approximate Dirac cone.

In the magnetic layer group of the symmorphic model
in Fig. 4, it is possible for pairs of sublattices to coincide,
such that only two sites are necessary. In such a two-
site system, the Dirac point would be allowed to sit at
the Fermi energy without the distribution of electrons
violating crystal symmetries. However, constructing a
two-site model with these symmetries requires a more
complicated pattern of magnetic ordering.

This physics may be realized in the antiferromagnetic
phase of iron-based superconductors. The iron pnictides
– and FeSe – comprise layers of iron arsenide or iron se-
lenide in the anti-litharge structure [36], and have already
been shown to have nontrivial topological properties [37].
Recently, monolayers of FeSe have been synthesized and
investigated [38, 39]. In the iron superconductors, in-
cluding bulk FeSe, the antiferromagnetic order typically
manifests as a striped pattern (Fig. 5(a)) [40–44] with
symmetries captured in the tSO1 = tSO2 , tSO3 = tSO4 limit
of Eq. 2. Using a DFT calculation [? ], we obtain the
band structure of FeSe (Fig. 5(b)), which exhibits clear
fourfold-degenerate Dirac fermions atM . For single-layer
FeSe, the filling prevents the Fermi energy from sitting
at any of the Dirac points. However, by stacking iron
pnictide monolayers with intercalated species, it may be
possible to engineer a few-layer system with the correct
filling.

We have described a class of magnetic Dirac semimet-
als protected by modifying time-reversal symmetry to in-
clude a fractional translation. This translation results in
commutation relations with the spatial symmetries differ-
ent from those in ordinary time-reversal-symmetric crys-

(a) (b)

FIG. 5. (a) The structure of an FeSe monolayer. The iron
atoms (dark gray) form a planar square lattice, while the
selenium atoms sit above and below the plane, so that the
iron atoms are tetrahedrally coordinated. Magnetic moments
are shown for the striped ordering phase, and are represented
by the colored arrows. (b) The band structure of the striped
phase of FeSe. Below the Fermi energy, the valence bands
form a Dirac point at M that splits weakly along the M-X
line. The splitting is due to spin-orbit interaction and its
weakness is a consequence of the bands comprising primarily
iron d-orbitals.

tals, allowing for Fermi surfaces consisting of single Dirac
points, and removing the requirement of nonsymmorphic
symmetries. Both topologically nontrivial magnetic crys-
talline insulating and Chern insulating phases are eas-
ily accessible from this magnetic semimetallic phase by
breaking symmetries. The dimerizations required to gap
into the T̄ -preserving phases can, in general, be achieved
by applying 11-direction-strain, and provide a route to-
wards strain-engineering broken-time-reversal quantum
phase transitions. We find that FeSe monolayers with
striped magnetic ordering display these magnetic Dirac
fermions.

The role of disorder and interactions in magnetic Dirac
semimetals is an open question. A given disorder en-
semble may preserve magnetic group symmetries on the
average while nevertheless representing a quantum criti-
cal point nonperturbatively related to the single-particle
magnetic Dirac point, or the system may Anderson lo-
calize. However, if the mean-field theory still obeys the
group symmetries, Eq. 1 remains satisfied and a gap can-
not form. In strongly-correlated time-reversal-symmetric
filling-enforced semimetals SrIrO3 and CuBi2O4, there
have been hints of Mott instability related to emergent
spin order [28, 47, 48]. As magnetic Dirac semimetals
are already stable under spin ordering, their gaplessness
may therefore be more robust against interactions.

Finally, we note that these magnetic semimetals cir-
cumvent the Dirac fermion doubling theorem for time-
reversal-symmetric Dirac semimetals. In those systems,
unpaired Dirac points are prevented from being stabi-
lized in 2D bulk crystals by the presence of additional
Dirac or Weyl features at the Fermi energy. This pre-
vents the nearby QSH and trivial insulating phases from
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being related to each other by a crystal symmetry op-
eration [32]. Though the T̄ -preserving gapped phases
in our systems seem to violate this doubling theorem,
they are actually unrelated. The gapped phases in these
magnetic Dirac systems are topological crystalline phases
preserved by time-reversal and a surface-specific spatial
operation, here the combined operation of time-reversal
and a diagonal half-lattice translation. The two anti-
ferromagnetic topological crystalline insulating phases in
Fig. 2 are Chern-trivial and related by a C2z operation,
such that only crystalline invariants are exchanged un-
der spatial operations and the overall bulk topology re-
mains unaffected. In fact, one may instead consider the
magnetic Dirac points presented here as the symmetry-
pinned combinations of two, twofold-degenerate quantum
Hall transitions. In this sense, these Dirac points also
successfully avoid the two-dimensional parity anomaly
for two-fold-degenerate fermions addressed by Haldane
in Ref. 49.
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