
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Phase Shift in an Atom Interferometer due to Spacetime
Curvature across its Wave Function

Peter Asenbaum, Chris Overstreet, Tim Kovachy, Daniel D. Brown, Jason M. Hogan, and
Mark A. Kasevich

Phys. Rev. Lett. 118, 183602 — Published  1 May 2017
DOI: 10.1103/PhysRevLett.118.183602

http://dx.doi.org/10.1103/PhysRevLett.118.183602


Phase shift in an atom interferometer due to spacetime curvature across its
wavefunction

Peter Asenbaum,1 Chris Overstreet,1 Tim Kovachy,1 Daniel D. Brown,2 Jason M. Hogan,1 and Mark A. Kasevich1

1Department of Physics, Stanford University, Stanford, California 94305
2School of Physics and Astronomy, University of Birmingham, Birmingham, B15 2TT, UK

(Dated: March 13, 2017)

Spacetime curvature induces tidal forces on the wavefunction of a single quantum system. Using
a dual light-pulse atom interferometer, we measure a phase shift associated with such tidal forces.
The macroscopic spatial superposition state in each interferometer (extending over 16 cm) acts as a
nonlocal probe of the spacetime manifold. Additionally, we utilize the dual atom interferometer as
a gradiometer for precise gravitational measurements.
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A longstanding goal in matter-wave interferometry has
been to resolve a phase shift associated with spacetime
curvature across a particle’s wavefunction [1–7]. The con-
ceptual significance of such a tidal phase shift (φtidal)
arises from the fact that acceleration and spacetime cur-
vature have different physical origins in general rela-
tivity: local acceleration arises from non-gravitational
forces, while curvature characterizes the spacetime man-
ifold [2]. Unlike phase shifts arising from local accelera-
tion, curvature-induced phase shifts have been described
as representing the first true manifestation of gravitation
in a quantum system [1–5].

In prior gravitational measurements exploiting de
Broglie wave interference [8–15], the interferometer arm
separation was small enough that the spacetime curva-
ture across the wavefunction (i.e. gravity gradient across
the interferometer arms) did not produce an identifi-
able tidal phase shift. For the purpose of understanding
gravitational effects in these experiments, the trajectory
of each interfering particle is well-described by a single
geodesic that is defined by that particle’s initial position
and velocity before the interferometer. The interferome-
ter phase measures the local acceleration of this geodesic
relative to the interferometer beam splitters and mirrors.

To clarify this distinction, we consider as an example
the case of light-pulse Mach-Zehnder atom interferome-
try with momentum transfer n~k and pulse spacing T .
We denote the position (velocity) of a given particle i
at the time when the first beam splitter is applied as zi
(vi), the local gravitational acceleration at position zi as
gi, and the atomic mass as m. For simplicity, we con-
sider a uniform gravity gradient Tzz. We initially con-
sider the regime in which the interferometer arm sepa-
ration is small enough that tidal forces across the arms
can be neglected. With this assumption, we compute
the phase shift for two different cases: first, with the
lasers that generate the interferometer beam splitters and
mirrors following the particle’s geodesic; second, with
the lasers fixed in the lab frame. In the first case, the
phase shift is zero. In the second case, the phase shift

is φlab = nkgiT
2 + nkviTzzT

3 + (7/12)nkgiTzzT
4 [16].

Since the phase shift is zero when the lasers move along
the particle’s geodesic, the entire phase shift φlab can
be understood as arising from the relative motion of the
lasers and this geodesic [17]. This phase shift includes the
effect of the coupling of initial conditions to the gravity
gradient [10] but does not include φtidal.

If the interferometer arm separation is made large
enough that there are resolvable tidal forces across the
spatial extent of the interferometer, then the wavefunc-
tion of an interfering particle can no longer be approx-
imated as traveling along a single populated geodesic.
Instead, the two arms follow separate trajectories that
accelerate with respect to one another. A tidal phase
shift can be observed in this regime–it appears as [16]
φtidal = (~/2m)n2k2TzzT

3 in this example regardless of
whether the lasers are fixed in the lab frame or follow
the geodesic defined by the particle’s initial position and
velocity. From these considerations, φtidal is a manifes-
tation of gravitational curvature that cannot be inter-
preted as simply arising from the relative motion of a
single atomic trajectory and the interferometer lasers.

In this Letter, we report the first observation of a tidal
phase shift. In our experiment, this phase shift is induced
by a 84 kg proof mass in a geometry chosen so that the
interferometer wave packet separation is comparable to
the length scale of the change in the gravitational field.
We employ large momentum transfer light-pulse atom
interferometry [18–21] and long interogation times [22]
to achieve wavepacket separations in excess of 10 cm. We
identify φtidal by observing the interferometer phase shift
as a function of wavepacket separation and proof mass
position.

The core apparatus has been described previously [22–
24]. Each experimental run begins with the preparation
of an ultracold 87Rb atom cloud. The atoms are launched
vertically into a 10 m tall atomic fountain using an optical
lattice. Subsequently, the atoms are collimated by an op-
tical dipole lens (1 mm waist, red-detuned laser beam) in
the transverse dimensions. This lens is applied ∼100 ms
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FIG. 1. (a) Spacetime diagram of the centers of the wave
packets for a dual interferometer sequence, neglecting gravi-
tational acceleration. An initial atom source is split into two
clouds that drift apart with momentum difference N1~k for
time τ , ultimately separating by the baseline L. Each cloud
is used as the source for a Mach-Zehnder interferometer with
momentum splitting n~k and pulse spacing T . The path sep-
aration between the two interferometer arms reaches a dis-
tance of ∆z = (n~k/m)T . The numerical values in parenthe-
ses indicate typical experimental parameters. In this work, k
is negative for the initial splitting and interferometer pulses,
i.e. the interferometer trajectories are below the unperturbed
launch height. Data plots: fluorescence images of spatial in-
terference fringes for an interferometer with (b) ∆z = 4 cm
(n = 10) and (c) ∆z = 12 cm (n = 30).

after the end of the launch. Ultimately, the launched
atom cloud contains ∼106 atoms with an effective tem-
perature of ∼ 50 nK in the transverse dimensions.

A dual interferometer configuration [13, 20, 25] is used
to suppress spurious phase shifts arising from vibrations
in the laser delivery optics (see Fig. 1). The LMT atom
optics consist of sequences of absolute AC Stark-shift
compensated, two-photon Bragg transitions [22]. Figure
1(a) illustrates the spacetime diagram associated with a
single-source dual interferometer sequence [20]. An ini-
tial LMT beam splitter sequence splits the atom cloud
into two wave packets with momenta differing by N1 pho-
ton momentum recoil kicks (N1~k, where k is the wave
number of the laser used to drive the Bragg transitions)
in the vertical direction. The wave packets are allowed to
freely drift apart for a time τ . Next, the initially acceler-
ated arm is decelerated by an LMT sequence so that the
momentum splitting between the wave packets is reduced
to 2~k. The two wave packets are vertically separated by

a baseline L = (N1~k/m)τ and are the respective sources
for the dual interferometers [26]. Before the initial beam
splitter sequence, the vertical velocity distribution is fil-
tered by two long-duration π-pulses (Gaussian temporal
profile, FWHM 200µs).

The interferometers are initiated by a beam splitter
sequence like the one used to split the initial atom cloud
(the two vertically displaced wave packets use opposite
input ports of the first interferometer beam splitter, since
their momenta differ by 2~k). We use a Mach-Zehnder
interferometer sequence with pulse spacing T . The mo-
mentum difference between the interferometer arms is
denoted by n~k. The laser system and optics configura-
tion used to drive the Bragg transitions is described in
[22].

We measure the differential phase shift between the
two interferometers (gradiometer phase) by imaging one
output port from each interferometer onto a CCD camera
using resonant scattering. Because of the large vertical
displacement between the two interferometers, we deliver
an additional momentum kick −N2~k to the lower port
of each interferometer, so that the lower port of the upper
interferometer and the upper port of the lower interfer-
ometer fit into the CCD camera’s field of view at the time
of detection [see Fig. 1(a)]. We use phase shear readout
[27, 28] to extract a value for the gradiometer phase from
each individual run of the experiment. Specifically, the
angle of the Bragg laser beams is slightly tilted for the
final beamsplitter sequence using a piezo tip-tilt stage on
the retro-reflection mirror, imprinting a horizontal phase
gradient across the cloud. This leads to horizontal spatial
fringes in the interferometer output ports [see Fig. 1(b)-
(c)], allowing for single-shot determination of phase and
contrast [27] in a single port. The relative phase between
the two interferometers is then determined [29]. We im-
plement measurements using interferometers with path
separations ∆z of up to ∆z = 16 cm with L = 20 cm,
n = 38, and T = 700 ms.

We placed several lead bricks near the apex of the in-
terferometer trajectory and observed their effect on the
gradiometer phase. The bricks produce a phase shift of
1.0 rad [Fig. 2(a)-(b)], in agreement with the theoretical
prediction obtained by numerically calculating the prop-
agation, laser, and separation phases along the perturbed
interferometer trajectories [16, 30, 31]. We find the sys-
tematic error of the gradiometer phase due to changes
in the horizontal position of the atoms to be small [29].
Figure 2(c) compares the difference in the gradiometer
phase (with and without bricks present) to its predicted
value as a function of launch height.

The macroscopic spatial and temporal scales of the
interferometers allow the interferometers to resolve the
tidal phase shift. The momentum recoil kicks that
the atoms receive during the beam splitter and mir-
ror interactions lead to wave packet trajectory deflec-
tions with characteristic size equal to the interferom-
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FIG. 2. (a) Schematic representation of the experimental
setup for measuring the gravity gradient of seven lead bricks
(total mass 84 kg). (b) Measured gradiometer phase of a se-
quence with h = 8.45 m, L = 32 cm, n = 20, and T = 600 ms
(∆z = 7 cm), with (solid circles) and without (open circles)
the bricks present. (c) Gradiometer phase difference (with
and without bricks present) as a function of launch height
with L = 10 cm, n = 30, and T = 900 ms (∆z = 16 cm). The
black, solid curve represents the full phase shift calculation.

eter path separation ∆z = (n~k/m)T . Tidal forces
over this distance scale lead to the tidal phase shift
φtidal ' (~/2m)n2k2TzzT

3 = (1/2)nk∆zTzzT
2, which

scales with the wave packet separation.

In a uniform gravity gradient, φtidal would be the same
for the upper and lower interferometers and thus would
not be present in the gradiometer phase. To circumvent
this limitation, we use the gravitational field of the lead
bricks, which has a spatially varying gradient [Fig. 3(a)-
(b)]. The gradiometer phase difference therefore depends
on the spatial variation of Tzz, and the difference in φtidal
manifests as ∆φtidal ' (~/2m)n2k2 (∆Tzz)T

3 [14] [32].
Figure 3(d) shows the difference between the gradiometer
phase measured with and without bricks as a function of
the LMT order of the interferometer n. These measure-
ments are compared to a theoretical model that does not
include ∆φtidal. To remove ∆φtidal from the calculation,
we artificially consider trajectory deflections from the in-
terferometer atom optics to be negligible (small-recoil
trajectory). The small-recoil phase shift corresponds to
the phase shift of the interferometer in the limit of highly
massive interfering particles. The measurements devi-
ate strongly from this model and agree with the model
that includes the full phase shift calculation. Without
the tidal contribution, the gradiometer phase difference
would increase linearly with n (see discussion of φlab in
introduction) with the slope determined by the spatial
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FIG. 3. (a) Spacetime diagram for a gradiometer with
h = 8.25 m, L = 32 cm, T = 550 ms, and n = 30. (b)
Calculated gravitational acceleration induced by the bricks
as a function of height along the interferometer axis. (c)
Schematic of the interferometer trajectories, neglecting gravi-
tational acceleration: upper (solid red) and lower (solid blue)
arms, midpoint line (dashed gray), and the trajectory with-
out recoil from interferometer atom optics (dashed black). (d)
Gradiometer phase difference of a sequence with h = 8.25 m,
L = 32 cm, and T = 550 ms as a function of n (∆z = 2 cm to
∆z = 10 cm). The black, dashed curve is the phase calculated
without including the tidal phase shift. The solid red and blue
curves are ∆φu and ∆φl, respectively (see main text). The
gray, dashed (black, solid) curve is the phase predicted by the
midpoint line (full phase shift) calculation. Each data point
is the average of 15 shots.

variation of g over the baseline L.
The tidal phase shift is negligible unless the two arms

of one interferometer experience accelerations that differ
at the scale of the acceleration sensitivity–that is, there
must be resolvable tidal forces across the wavefunction.
To illustrate this, we separate the full phase shift into
contributions representing the local gravitational accel-
eration along each interferometer arm. Labeling the two
interferometers as A and B, the phase shift of interfer-
ometer α ∈ {A,B} is approximately given by Bordé’s
midpoint theorem [33]:

φα = nk
(
zαu (0)+z

α
l (0)

2

)
− 2nk

(
zαu (T )+zαl (T )

2

)
(1)

+nk
(
zαu (2T )+zαl (2T )

2

)
.

Here zαu (t) is the position of the upper arm of inter-
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FIG. 4. (a) Schematic of the interferometer and surrounding
mass, to scale, with indicated launch heights. (b) Measured
gravity gradient (blue points) as a function of launch height
h for a gradiometer with L = 10 cm, n = 10, and T = 500 ms.
The red, dashed curve is a model of the interferometer re-
sponse to the gravity gradient produced by a spherical Earth,
including the effects of the cylindrical pit and basement in
which the interferometer is located. The model has one free
parameter, the density of Earth’s surface near the interferom-
eter, which fits to ρ = 2.3 g/cm3. The black, solid curve is
an interpolation (logistic fit, all parameters free). Each data
point is the average of 50 shots. Statistical uncertainties are
≈ 6 E (error bars smaller than data points).

ferometer α at time t, and zαl (t) is the position of the
lower arm of interferometer α at time t. Note that
φα = 1/2 (φαu + φαl ), where φαu ≡ nkzαu (0)− 2nkzαu (T ) +
nkzαu (2T ) and φαl ≡ nkzαl (0) − 2nkzαl (T ) + nkzαl (2T ).
Each of the quantities φAu , φAl , φBu , and φBl corresponds to
the phase shift of a Mach-Zehnder interferometer subject
to the local acceleration along one interferometer arm.

We define the quantities ∆φu ≡ φAu − φBu and ∆φl ≡
φAl − φBl . At the experimental resolution, ∆φu > ∆φl
holds for large enough wave packet separation [Fig. 3(d)],
i.e. φAu − φAl > φBu − φBl . This indicates that in at least
one of the interferometers A and B, the upper and lower
arms experience resolvably different forces. Therefore,
the phase shift of this interferometer is not determined by
the local acceleration along a single populated trajectory,
demonstrating that the atomic wavefunction is a nonlocal
probe of the spacetime manifold [34].

The techniques demonstrated above are useful for ap-
plications involving precise measurement of gravitational
gradients. The gradiometer achieves a resolution of 3 E
per shot with parameters L = 32 cm, n = 20, and
T = 600 ms (1 E = 10−9 s−2) [29]. This corresponds
to a differential acceleration sensitivity of 1× 10−10g per
shot (5 × 10−10g/

√
Hz given the 22 s cycle time) and is

near the estimated shot noise limit of ∼ 1 E per shot. Im-
provements in the atom source and imaging system would
increase the atom number and contrast, allowing higher
sensitivity, while a more advanced cold atom source [35]
could reduce the cycle time to several seconds.

As an example of this capability, we measure the grav-
ity gradient as a function of vertical position in the ap-
paratus. This is done by varying the lattice launch ve-
locity. Fig. 4 shows the measured gravity gradient as a
function of launch height. The observed spatial varia-
tion of the gravity gradient is reasonably consistent with
a model that includes the PREM (preliminary reference
earth model) [36], the cylindrical pit surrounding the in-
terferometer, and the basement in which the lab is lo-
cated. An interpolation of the measured gravity gradient
is used to predict the gradiometer phase as a function of
launch height h for other measurements, such as those
described by Figs. 2 and 3.

Our approach differs from that employed by previ-
ous precision atomic gravity gradiometers [11–13], which
used independently generated atom clouds separated by
a baseline as the sources for two accelerometers. These
gradiometers were subject to uncertainty in the baseline
length due to source position fluctuations. In contrast,
the baseline of the single-source gradiometer presented
here is insensitive to the atom source position [37]. The
idea of using LMT atom optics to create a single-source
gradiometer was first demonstrated in a proof-of-concept
experiment for a short baseline (∼ 70 µm) [20] and has
been proposed in the context of a spaceborne gradiometer
[38].

The observed phase stability of our gradiometer (e.g.,
130 mrad per shot for L = 32 cm, n = 30, and T =
550 ms) can be used to constrain extensions of quantum
mechanics that would manifest themselves through ad-
ditional noise in the gradient measurement, due to, for
example, anomalous wave packet localization at a length
scale of ∼10 cm [39]. Bounding the phase noise of widely-
separated, macroscopic interferometers is complementary
to previous work [22, 40, 41], which was designed to be
sensitive to spurious phase shifts that would occur inho-
mogeneously [22, 41]. With a suitable source mass con-
figuration, the dual interferometer could be used to mea-
sure the gravitational Aharonov-Bohm effect [42] and the
gravitational constant [43, 44].
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