
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Chiral Shock Waves
Srimoyee Sen and Naoki Yamamoto

Phys. Rev. Lett. 118, 181601 — Published  3 May 2017
DOI: 10.1103/PhysRevLett.118.181601

http://dx.doi.org/10.1103/PhysRevLett.118.181601


Chiral Shock Waves

Srimoyee Sen
Department of Physics, The University of Arizona, Tucson, Arizona 85721, USA

Naoki Yamamoto
Department of Physics, Keio University, Yokohama 223-8522, Japan

We study the shock waves in relativistic chiral matter. We argue that the conventional Rankine-
Hugoinot relations are modified due to the presence of chiral transport phenomena. We show that
the entropy discontinuity in a weak shock wave is quadratic in the pressure discontinuity when the
effect of chiral transport becomes sufficiently large. We also show that rarefaction shock waves,
which do not exist in usual nonchiral fluids, can appear in chiral matter. The direction of shock
wave propagation is found to be completely determined by the direction of the vorticity and the
chirality of fermions. These features are exemplified by shock propagation in dense neutrino matter
in the hydrodynamic regime.

Introduction.—Recently, relativistic chiral matter has
attracted great interest both theoretically and experi-
mentally. Chiral matter is considered to be realized in
a wide range of systems from the electroweak plasmas in
the early Universe [1, 2], quark-gluon plasmas in heavy
ion collisions [3, 4], Weyl (semi)metals [5–8], and elec-
tron plasmas in neutron stars [9–11] to neutrino media in
core-collapse supernova explosions [12, 13]. A remarkable
property of chiral matter is the presence of unusual trans-
port phenomena related to quantum anomalies in field
theory [14, 15], called the chiral magnetic effect (CME)
in a magnetic field [4, 5, 16, 17] and chiral vortical effect
(CVE) in a vorticity [18–21]. These chiral transport phe-
nomena lead to new types of collective modes, such as the
chiral magnetic wave [22, 23], chiral vortical wave [24],
chiral Alfvén wave [25], chiral heat wave [26], and the
chiral plasma instability [1, 2, 27]; see also Refs. [28, 29]
for recent related works.
In this paper, we study the shock propagation in rel-

ativistic chiral matter. We first argue that the so-called
Rankine-Hugoniot relations, or the jump conditions at
the shock front [30], must be modified by the presence of
chiral transport phenomena. This in turn leads to mod-
ifications of the basic properties of weak shock waves in
chiral matter. Our main findings are summarized as fol-
lows:

• The dependence of entropy discontinuity at the
shock front on the corresponding pressure discon-
tinuity is quadratic, ∆S ∝ (∆p)

2
[see Eq. (43)],

when the effect of chiral transport becomes suffi-
ciently large. This should be contrasted with the
behavior ∆S ∝ (∆p)3 in nonchiral matter [30].

• Rarefaction shock waves can appear in chiral mat-
ter for a sufficiently large vorticity ω ≫ ωc, where
ωc is defined in Eq. (42). This should be contrasted
with the fact that rarefaction shock waves are usu-
ally prohibited in nonchiral matter [30, 31].

• For a given chirality of fermions, the direction of

shock wave propagation is completely determined
by the direction of the vorticity.

We exemplify these features by studying shock waves in
dense charge neutral chiral matter in the hydrodynamic
regime. Such a situation is realized, e.g., by neutrino
media at the core of supernovae [12]. These qualitatively
new aspects of shock waves in chiral matter may have
possible relevance, e.g., to the dynamics of supernovae.
Although our argument does in part depend on this par-
ticular case of chiral matter, we expect that the quali-
tative features of our result is more generic. We discuss
the possible applications of our arguments and results to
other systems in the conclusion.

Chiral hydrodynamics.—Our starting point is the rel-
ativistic chiral hydrodynamics [20]. With keeping a spe-
cific application to the neutrino media in supernovae [12]
in mind, we consider chiral hydrodynamics for charge
neutral chiral matter. Our argument can be extended
to charged chiral matter in an external electromagnetic
fields in a straightforward manner. For simplicity, we will
here ignore the dissipative effects.

The equations of relativistic chiral hydrodynamics for
a single (right- or left-handed) chiral fermion are given
by energy-momentum conservation and particle number
conservation as

∂µT
µν = 0, (1)

∂µj
µ = 0. (2)

Here the energy-momentum tensor T µν and particle
number current jµ are given in the Landau-Lifshitz frame
by [20]1

T µν = huµuν − pgµν , (3)

jµ = nuµ + ξωµ, (4)

1 We use the metric g
µν = diag(1,−1,−1,−1) in this paper.
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where h = ǫ+ p is the enthalpy density, n is the particle
number density, uµ = γ(1,v) is the fluid velocity with
γ = (1 − v

2)−1/2, and ωµ = 1
2
ǫµνλρuν∂λuρ is the fluid

vorticity.

What is different in the neutral chiral hydrodynamics
from the conventional nonchiral hydrodynamics [30] is
the presence of the CVE proportional to ωµ in Eq. (4)
[18–21]. The transport coefficient ξ takes the form of
[20, 21, 33]

ξ = Cµ2

(

1− 2

3

nµ

h

)

+DT 2

(

1− 2nµ

h

)

, (5)

where µ is the chemical potential and T is the tempera-
ture. The coefficients C and D are related to those of the
chiral anomaly and mixed gauge-gravitational anomaly
as [20, 21, 34, 35]

C = ± 1

4π2
, D = ± 1

12
, (6)

for right- and left-handed chiral fermions, respectively.

In the following, we will focus on the regime µ ≫ T for
demonstration. This is relevant to, e.g., the dense neu-
trino matter at the core of supernovae [12]. Note however
that our argument itself is not limited to this regime and
is applicable to other regimes as well. For a relativistic
gas of noninteracting fermions (which is a reasonable as-
sumption for a neutrino gas), the expressions of n, p, ǫ,
and the entropy S are given by

n =
µ3

6π2
+

µT 2

6
, (7)

p =
ǫ

3
=

µ4

24π2
+

µ2T 2

12
, (8)

S =
π2T

µ
, (9)

to the leading corrections in T/µ ≪ 1. From Eqs. (7) and
(8), the transport coefficient ξ in Eq. (5) in the regime
µ ≫ T reduces to

ξ ≈ 1

3
Cµ2 +

(

2π2

3
C −D

)

T 2 . (10)

Shock waves in relativistic nonchiral matter.—We first
revisit the properties of shock waves in relativistic nonchi-
ral matter [30] before we analyze shock waves in chiral
matter. Consider a relativistic gas of particles moving
along the x axis towards the positive x direction and
that there is a surface of discontinuity perpendicular to
the direction of propagation of the gas. This surface of
discontinuity divides the three dimensional space into two
regions, side 1 and side 2. The sides are defined in such
a way that the gas moves from side 1 to side 2.

Imposing continuity in particle number flux, energy
and momentum flux, jx1 = jx2 , T

xx
1 = T xx

2 , and T 0x
1 =

T 0x
2 , we have the following three equations relating the

two sides [30],

v1γ1
V1

=
v2γ2
V2

, (11)

h1v
2
1γ

2
1 + p1 = h2v

2
2γ

2
2 + p2, (12)

h1v1γ
2
1 = h2v2γ

2
2 , (13)

where the subscripts 1 and 2 stand for the sides 1 and
2 and V is the volume per particle, V ≡ 1/n. Equa-
tions (11)–(13) constitute the Rankine-Hugoniot rela-
tions for shock propagation in nonchiral matter.
By solving Eqs. (12) and (13) in terms of v1 and v2,

we have [30]

v1 =

√

(p2 − p1)(ǫ2 + p1)

(ǫ2 − ǫ1)(ǫ1 + p2)
, (14)

v2 =

√

(p2 − p1)(ǫ1 + p2)

(ǫ2 − ǫ1)(ǫ2 + p1)
. (15)

Substituting these expressions into Eq. (11), we obtain
the pressure-volume relation [30]:

h2
1V

2
1 − h2

2V
2
2 + (p2 − p1)(h1V

2
1 + h2V

2
2 ) = 0. (16)

For given p1 and V1, it provides the relation between p2
and V2 under the equation of state p = p(ǫ).
Let us consider the case of weak shock waves. For

weak shock waves, we have ǫ2 → ǫ1 and p2 → p1, etc. If
we expand the expression for the speed on side 1 given in
Eq. (14) in ∆ǫ/h1 ≪ 1 and ∆p/h1 ≪ 1, with ∆ǫ ≡ ǫ2−ǫ1
and ∆p ≡ p2 − p1, we find that

(v1)
2 = lim

2→1

∆p

∆ǫ

ǫ2 + p1
ǫ1 + p2

=
dp

dǫ

∣

∣

∣

∣

1

lim
2→1

(

1 +
∆ǫ

h1

− ∆p

h1

+ · · ·
)

=
dp

dǫ

∣

∣

∣

∣

1

[

1 +
∆ǫ

h1

(

1− dp

dǫ

∣

∣

∣

∣

1

)

+ · · ·
]

= (cs1)
2

[

1 +
∆ǫ

h1

(

1− (cs1)
2
)

+ · · ·
]

, (17)

where cs1 is the speed of sound on side 1, (cs1)
2 =

(dp/dǫ)1. Similarly we find that

(v2)
2 = (cs2)

2

[

1− ∆ǫ

h1

(

1− (cs2)
2
)

+ · · ·
]

, (18)

where cs2 is the speed of sound on side 2, (cs2)
2 =

(dp/dǫ)2. In order to simplify our discussion below, we
assume the equations of states on the two sides to be the
same, where cs1 = cs2.
As can be seen from Eqs. (14) and (15), (v1)

2 > (v2)
2

when ǫ2 > ǫ1, and (v1)
2 < (v2)

2 when ǫ2 < ǫ1. The
former is known as a compression shock wave and the
latter is known as a rarefaction shock wave. Remember
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also that, for compression shock waves, we have p2 > p1,
and for rarefaction shock waves, we have p1 > p2. This
is ensured by the fact that

c2s = lim
2→1

p2 − p1
ǫ2 − ǫ1

> 0 . (19)

Although the equations of relativistic hydrodynamics al-
low for the existence of both compression shock waves
and rarefaction shock waves, only compression shock
waves are consistent with the second law of thermody-
namics, but rarefaction shock waves are not.
In order to see it, we expand the adiabatic of Eq. (16)

using

∆H = T∆S + V1∆p+
1

2

∂V

∂p

∣

∣

∣

∣

1

(∆p)2 +
1

6

∂2V

∂p2

∣

∣

∣

∣

1

(∆p)3 + · · · ,

(20)

∆V =
∂V

∂p

∣

∣

∣

∣

1

∆p+
1

2

∂2V

∂p2

∣

∣

∣

∣

1

(∆p)2 +
1

6

∂3V

∂p3

∣

∣

∣

∣

1

(∆p)3

+
∂V

∂S

∣

∣

∣

∣

1

∆S + · · · , (21)

the former of which can be derived by using the ther-
modynamic relation V = ∂H/∂p|S . Here H = hV is
the enthalpy, S = sV is the entropy, and we defined
∆H = H2 − H1, ∆S = S2 − S1, and ∆V = V2 − V1.
After substituting Eqs. (20) and (21) into Eq. (16), one
finds [30]

∆S =
1

12H1T

∂2(HV )

∂p2

∣

∣

∣

∣

1

(∆p)3 +O
(

(∆p)4
)

. (22)

It can be seen by plotting the adiabatic for any reason-
able equation of state that ∂2(HV )/∂p2 > 0; for ultrarel-
ativistic gases at low T , see the explicit calculation of the
coefficient of the term (∆p)3 in Eq. (41) below. The sec-
ond law of thermodynamics requires that S2 > S1, which
then requires that p2 > p1. This corresponds to compres-
sion shock waves explained earlier. Hence we see that, in
nonchiral relativistic fluids, second law of thermodynam-
ics allows for the existence of compression shock waves
alone and that there are no rarefaction shock waves. This
is the so-called Zemplén’s theorem (see also [31]).
Chiral shock waves.—Let us now consider shock waves

in chiral matter in the presence of a vorticity ωµ. The
important point here is that the vorticity induces the
CVE in chiral matter, leading to the modifications of the
Rankine-Hugoniot relations. As a result, basic properties
of shock waves are qualitatively modified compared with
those in nonchiral matter above.
We again consider a situation where a shock wave is

moving along the x axis towards the positive x direc-
tion. For simplicity, we consider the case with a nonzero
constant vorticity in the x direction,

ωx =
1

2
ut(∂zuy − ∂yuz) ≡ ω , (23)

with ωy = ωz = 0, but the extension of our analysis to
more general cases should be straightforward. Note that
we are in a system where we cannot go to a frame where
vy = vz = 0 at all points, unlike the case of shock waves
in nonchiral matter discussed earlier.
In what follows, we consider the regime |ω|ρ ≪ 1,

where ρ =
√

y2 + z2 is the distance from the axis of
the vorticity. Assuming that ∂yvx = ∂zvx = 0, we can

solve Eq. (23) for v⊥ ≡
√

v2y + v2z to find

v⊥ = ωρ(1− v2x) +O
(

(ωρ)2
)

. (24)

Now let us look at how the jump conditions at the
shock front are modified in the presence of the vorticity.
Continuity of particle flux and energy-momentum flux
across a surface of discontinuity, jx1 = jx2 , T

xx
1 = T xx

2 ,
T 0x
1 = T 0x

2 , T yx
1 = T yx

2 , and T zx
1 = T zx

2 , reads

vx1γ1
V1

+ ξ1ω1 =
vx2γ2
V2

+ ξ2ω2 ≡ j , (25)

h1(v
x
1 )

2γ2
1 + p1 = h2(v

x
2 )

2γ2
2 + p2, (26)

h1v
x
1γ

2
1 = h2v

x
2γ

2
2 , (27)

h1v
x
1 v

y
1γ

2
1 = h2v

x
2v

y
2γ

2
2 , (28)

h1v
x
1v

z
1γ

2
1 = h2v

x
2v

z
2γ

2
2 . (29)

The modification, compared with Eqs. (11)–(13) in
nonchiral matter, is the presence of the CVE in Eq. (25).
Notice first that Eqs. (28) and (29) require that v⊥1 =

v⊥2 . From Eq. (24), we then must have ω1[1 − (vx1 )
2] =

ω2[1− (vx2 )
2]. Below we will be interested in weak shock

waves, for which vx2 → vx1 . In this limit

∆ω ≡ ω2 − ω1 = ω1

(vx2 )
2 − (vx1 )

2

1− c2s1
, (30)

up to terms that are suppressed by |(vx1 )2 − (vx2 )
2| ≪ 1.

To analyze the weak shock wave, only Eqs. (25)–(27) are
thus relevant, which constitute the modified Rankine-
Hugoniot relations for shock propagation in chiral mat-
ter.
These equations may also be viewed as the interface

conditions between the two sides of chiral matter in a
global rotation Ω = Ωx̂ under the replacement ω → Ω.
From Eqs. (25) and (26), we have

(h1V
2
1 − h2V

2
2 )j

2 − 2(h1V
2
1 ω1ξ1 − h2V

2
2 ω2ξ2)j

+p1 − p2 + (h1ω
2
1ξ

2
1V

2
1 − h2ω

2
2ξ

2
2V

2
2 ) = 0 . (31)

This can be solved for j as

j =
(h1V

2
1 ξ1ω1 − h2V

2
2 ξ2ω2)±

√
D

h1V 2
1 − h2V 2

2

, (32)

with

D ≡ (p2 − p1)(h1V
2
1 − h2V

2
2 ) + h1h2V

2
1 V

2
2 (ξ1ω1 − ξ2ω2)

2.

(33)
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In order for j to be real, we must have D ≥ 0.
Note that we must have |ω1,2| ≪ µ1,2 for hydrody-

namics to make sense, where µ1,2 is the chemical poten-
tial of side 1 or 2. Since we are interested in the regime
4π
3
ρ3 ≫ V , the limit |ω1,2|ρ ≪ 1 is within the applicabil-

ity of hydrodynamics. In this limit, Eqs. (26) and (27)
can be solved to obtain the expressions for vx1 and vx2
which invariably turn out to be identical to the expres-
sions in Eqs. (14) and (15) up to corrections suppressed
by powers of ρω1,2. Hence, we can use the leading-order
expression for the velocities in the expansion of ρω1,2 in
Eq. (25) to obtain the relation on the two sides as

v1

V1

√

1− v21
− v2

V2

√

1− v22
= −(ω1ξ1 − ω2ξ2) . (34)

Here v1,2 are given in Eqs. (14) and (15). Recalling that
µ1,2 and T1,2 can be written in terms of p1,2 and V1,2 from
Eqs. (7) and (8), both sides of Eq. (34) can be expressed
in terms of p1,2 and V1,2 alone, for a given equation of
state p = p(ǫ). This provides the pressure-volume re-
lation of the two sides for chiral matter in a constant
vorticity.
Let us now consider how the relation (22) is modified

for weak shock waves in chiral matter. The modified
relation will be obtained by expanding Eq. (34) in terms
of ∆S = S2 − S1 and ∆p = p2 − p1 across the surface
of discontinuity. The expansion of the left-hand side of
Eq. (34), but ignoring the right-hand side, would lead
to the result (22) for nonchiral matter. Here we need to
expand the right-hand side in ∆S and ∆p as well.
For this purpose, we first solve p = p(µ, T ) and S =

S(µ, T ) in Eqs. (8) and (9) for µ and T in terms of p and
S, by treating S ≪ 1 as a perturbation for µ ≫ T . The
results to the leading correction in S ≪ 1 are given by

µ(p, S) =

(

1− S2

2π2

)

(24π2p)1/4 , (35)

T (p, S) =
S

π2
(24π2p)1/4 . (36)

From these equations, ∆µ ≡ µ2 − µ1 and ∆T ≡ T2 − T1

can be expanded in ∆p and ∆S as

∆µ =
6π2

µ3
∆p− T∆S , (37)

∆T =
6π2T

µ4
∆p+

µ

π2
∆S . (38)

We then expand ∆ξ ≡ ξ2 − ξ1 in ∆S and ∆p. When
µ ≫ T , using Eqs. (6), (10), (37), and (38), we have

∆ξ = λ

[

1

µ2
∆p− 6π2

µ6
(∆p)2 + · · ·

]

, (39)

where

λ ≡ 4π2C = ±1, (40)

for right- and left-handed chiral matter, respectively. In
Eq. (39), “ · · · ” stands for higher order terms in ∆p and
terms of quadratic and higher order in ∆S. Note here
that the coefficient of ∆S in Eq. (39) is proportional to
2C/3− 2D/π2 and vanishes identically regardless of the
chirality.
Collecting the leading terms in the expansion of

Eqs. (34) in ∆S and ∆p using Eqs. (20), (21), (30), and
(39), we arrive at

∆S =
216π6

µ11
1 T1

(∆p)3 − ω1λ
36

√
2π4

µ8
1T1

(∆p)2 + · · · , (41)

where “ · · · ” includes terms that are higher order in ∆p.
Note that the first term on the right-hand side of Eq. (41)
corresponds to the result (22) for nonchiral matter. The
correction in the second term due to the vorticity be-
comes negligible and reduces to the result (22) when
|ω1| ≪ ωc for a given ∆p, where

ωc = 3
√
2π2∆p

µ3
1

. (42)

Let us now consider the case with |ω1| ≫ ωc. However,
ω1 still needs to be small enough such that |ω1|ρ ≪ 1
remains valid. In this case, Eq. (41) is approximately

∆S ≈ −ω1λ
36

√
2π4

µ8
1T1

(∆p)2 . (43)

This is our main result.
Recall that the second law of thermodynamics requires

that ∆S > 0. From Eq. (43), this allows for shock waves
only when ω1λ < 0. According to our conventions here,
a positive vorticity is assumed to be pointing opposite
to the direction of the shock wave propagation. Hence,
for right-handed fermions (where λ = 1), we must have
ω1 < 0 for shock wave propagation and vice versa. In
particular, for neutrino matter (where λ = −1), we must
have ω1 > 0 to satisfy ∆S > 0. The other remarkable fea-
ture of our result is that the sign of ∆S is independent
of the sign of ∆p. Hence, for ω1λ < 0, both compres-
sion and rarefaction shock waves are realizable in con-
trast with nonchiral shock waves which can only be of
the compression type.
Discussion.—In this paper, we have explored the shock

propagation in relativistic chiral matter. We have seen
that the conventional Rankine-Hugoniot relations are
modified due to the presence of chiral transport phenom-
ena. In particular, we have shown that rarefaction shock
waves can appear in chiral matter. Also we have shown
that the existence of a shock wave itself is dependent on
the chirality of the fermions involved and the direction
of shock wave propagation. In this sense, the shock wave
found in this paper is chiral, similar to the other chiral
waves [22–26]. It would be interesting to study possible
phenomenological consequences of the chiral shock wave,
e.g., in the dynamics of supernovae. In fact, the mean free



5

path of neutrinos, lmfp . 1 m at the core of supernovae
(with matter density ρ & 1013 g/cm3), is much smaller
than the typical size of the core, lcore ∼ 100 km. Hence,
chiral hydrodynamics is applicable to neutrino matter at
least in such a system [12].

Although we limit ourselves to dense and cold charge
neutral chiral matter in this paper, our argument should
be applicable to hot and/or dense charged chiral matter
in an external magnetic field as well. In this case, the
chiral magnetic effect modifies the Rankine-Hugoniot re-
lations in a way qualitatively similar to what we found in
this paper. Such a new type of shock wave may be rele-
vant to the electroweak plasmas in the early Universe.

This work was supported by JSPS KAKENHI Grants
No. 16K17703 and MEXT-Supported Program for the
Strategic Research Foundation at Private Universities,
“Topological Science” (Grant No. S1511006) and by the
U.S. Department of Energy through grant number DE-
FG02-04ER41338.

Note added.—After this work was being completed,
M. N. Chernodub informed the authors that he also ob-
tained the results [36] that have some overlap with ours.

[1] M. Joyce and M. E. Shaposhnikov, Phys. Rev. Lett. 79,
1193 (1997).

[2] A. Boyarsky, J. Frohlich, and O. Ruchayskiy, Phys. Rev.
Lett. 108, 031301 (2012).

[3] D. E. Kharzeev, L. D. McLerran, and H. J. Warringa,
Nucl. Phys. A 803, 227 (2008).

[4] K. Fukushima, D. E. Kharzeev, and H. J. Warringa,
Phys. Rev. D 78, 074033 (2008).

[5] H. B. Nielsen and M. Ninomiya, Phys. Lett. B 130, 389
(1983).

[6] X. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savra-
sov, Phys. Rev. B 83, 205101 (2011).

[7] A. A. Burkov and L. Balents, Phys. Rev. Lett. 107,
127205 (2011).

[8] G. Xu, H. Weng, Z. Wang, X. Dai, and Z. Fang, Phys.
Rev. Lett. 107, 186806 (2011).

[9] J. Charbonneau and A. Zhitnitsky, JCAP 1008, 010
(2010).

[10] A. Ohnishi and N. Yamamoto, arXiv:1402.4760 [astro-

ph.HE].
[11] M. Kaminski, C. F. Uhlemann, M. Bleicher, and

J. Schaffner-Bielich, Phys. Lett. B 760, 170 (2016).
[12] N. Yamamoto, Phys. Rev. D 93, 065017 (2016).
[13] N. Yamamoto, Phys. Rev. D 93, 125016 (2016).
[14] S. Adler, Phys. Rev. 177, 2426 (1969).
[15] J. S. Bell and R. Jackiw, Nuovo Cimento 60A, 47 (1969).
[16] A. Vilenkin, Phys. Rev. D 22, 3080 (1980).
[17] A. Y. Alekseev, V. V. Cheianov, and J. Frohlich, Phys.

Rev. Lett. 81, 3503 (1998).
[18] A. Vilenkin, Phys. Rev. D 20, 1807 (1979).
[19] D. Kharzeev and A. Zhitnitsky, Nucl. Phys. A 797, 67

(2007).
[20] D. T. Son and P. Surowka, Phys. Rev. Lett. 103, 191601

(2009).

[21] K. Landsteiner, E. Megias, and F. Pena-Benitez, Phys.
Rev. Lett. 107, 021601 (2011); Lect. Notes Phys. 871,
433 (2013).

[22] G. M. Newman, JHEP 0601, 158 (2006).
[23] D. E. Kharzeev and H. U. Yee, Phys. Rev. D 83, 085007

(2011).
[24] Y. Jiang, X. G. Huang, and J. Liao, arXiv:1504.03201

[hep-ph].
[25] N. Yamamoto, Phys. Rev. Lett. 115, 141601 (2015).
[26] M. N. Chernodub, JHEP 1601, 100 (2016).
[27] Y. Akamatsu and N. Yamamoto, Phys. Rev. Lett. 111,

052002 (2013); Phys. Rev. D 90, 125031 (2014).
[28] N. Abbasi, A. Davody, K. Hejazi, and Z. Rezaei,

arXiv:1509.08878 [hep-th].
[29] T. Kalaydzhyan and E. Murchikova, arXiv:1609.00024

[hep-th].
[30] L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Perg-

amon, New York, 1959).
[31] Precisely speaking, rarefaction shock waves can ap-

pear in nonchiral matter when ∂2(HV )/∂p2|S < 0 (or
∂2V/∂p2|S < 0 in the nonrelativistic limit). However,
this condition is usually not met except very particular
situations, e.g., near a gas-liquid critical point [32]. On
the other hand, the presence of chiral rarefaction shock
waves found in this paper does not depend on the sign of
∂2(HV )/∂p2|S , providing a novel realization of rarefac-
tion shock waves.

[32] Y. B. Zel’dovich, Zh. Eksp. Teor. Fiz. 4, 363 (1946);
P. A. Thompson, Phys. Fluids 14, 1843 (1971).

[33] Y. Neiman and Y. Oz, JHEP 1103, 023 (2011).
[34] S. Golkar and D. T. Son, JHEP 1502, 169 (2015).
[35] K. Jensen, R. Loganayagam, and A. Yarom, JHEP 1302,

088 (2013).
[36] M. N. Chernodub, to be published.


