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We introduce a technique for gravitational-wave analysis, where Gaussian process regression is used to
emulate the strain spectrum of a stochastic background by training on population-synthesis simulations.
This leads to direct Bayesian inference on astrophysical parameters. For PTAs specifically, we interpolate
over the parameter space of supermassive black-hole binary environments, including 3-body stellar scat-
tering, and evolving orbital eccentricity. We illustrate our approach on mock data, and assess the prospects
for inference with data similar to the NANOGrav 9-yr data release.

INTRODUCTION

Expensive computer simulations are a common prob-
lem in astrophysics. Complicated studies, from the de-
tails of exoplanet formation to cosmological galaxy evo-
lution, require numerical simulations that can take hours to
months [1–3]. Each simulation initiates from a set of phys-
ical assumptions or input parameters. Bayesian estima-
tion of these parameters using experimental data requires a
full exploration of possible values, i.e. simulations at each
point in parameter space, becoming prohibitively compu-
tationally expensive. In this Letter, we describe a method
to avoid this problem using the technique of Gaussian pro-
cess (GP) regression [4]. We demonstrate this method with
astrophysical inference of supermassive black-hole binary
(SMBHB) environments using the nanohertz gravitational
waves (GWs) that will soon be detected by pulsar timing
arrays (PTAs) [5].

The detection of the stochastic background of GWs from
the mergers of SMBHBs throughout our universe will
likely occur within the next ∼ 10 years [6, 7]. As dis-
cussed in Arzoumanian et al. [8] (N16), and Sampson et al.
[9], the details of the GW background are sensitive to the
physics that drives mergers. This can include binary eccen-
tricity, 3-body scattering encounters with stars in the galac-
tic nucleus, accretion disk dynamics, and much more — all
of which are theorized solutions to the final parsec prob-
lem [10], which arises because dynamical friction in post-
merger galaxy remnants is insufficient to drive SMBHs to
milliparsec orbital separations [11]. It is at these separa-
tions that GW emission dominates binary evolution, and
ultimately drives the binaries to merger. Since we do not
observe multiple SMBHs in the cores of galaxies [12, 13],
we expect that most galactic mergers lead to BH mergers,
and so some confluence of mechanisms must solve the final
parsec problem [14].

In this Letter we show that it is possible to perform
full Bayesian inference on the detailed physics of SMBHB

mergers by training a GP on a small set of simulations, ini-
tialized on a grid in input parameter space. We then use
the GP as a prior on the shape of the GW spectrum in PTA
data. This prior is a function of astrophysical parameters,
so our analysis directly samples the posterior distributions
of these parameters.

Analytic spectral models exist to encapsulate the influ-
ences of stars/gas [9] or eccentricity alone [15, 16] on the
strain spectrum — this type of analysis was performed in
N16. Stellar scattering, though, impacts SMBHB eccen-
tricity evolution [17], and so we must model their com-
bined influence. GP regression gives us the first PTA tech-
nique capable of constraining the combined dynamical in-
fluences of a dense galactic-center stellar distribution and
evolving SMBHB eccentricity.

METHODOLOGY

GP regression is a powerful interpolation scheme which
treats (noisy) data as a random draw from a multivari-
ate Gaussian process with a mean vector and covariance
function. We use the initial training data to learn the
GP’s covariance structure, after which we make predic-
tions about the outcome of hypothetical experiments be-
tween the training points (interpolation), and beyond them
(extrapolation). Our assumption is that the data do not ex-
hibit pathological discontinuities that would be poorly cap-
tured by a smooth covariance (kernel) function. GP regres-
sion allows us to interpolate and extrapolate beyond the
initial training data, and additionally provides the uncer-
tainty in the prediction which we can propagate forward to
our final statistics. It has recently been investigated in a
ground-based GW context to marginalize over the uncer-
tainties between expensive numerical relativity waveforms
and cheaper post-Newtonian waveforms [18–20], but has
not been used in GW data-analysis to emulate the statisti-
cal properties of astrophysical populations.
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Our training data are GW spectra built from synthe-
sized populations of SMBHBs, evolved from different ini-
tial conditions. In this proof-of-concept study we restrict
our attention to post–dynamical-friction binary eccentricity
and stellar densities in the galactic core. Our technique can
be trivially expanded to include a wider range of galactic-
center environmental influences and assembly-history pro-
cesses.

We build and train a GP capable of predicting the
shape of the strain spectrum when binary populations have
(i) non-zero eccentricity; (ii) significant orbital evolution
driven by stellar hardening; (iii) all of the above. Our pro-
cedure is as follows:

1. Simulate training data: Build a bank of SMBHB
populations by initializing simulations with different
binary eccentricities and environments.
[Computationally expensive].

2. Train the Gaussian-process model: Model the
strain distribution over population realizations as
Gaussian with a mean and standard error. This noisy
data is used to train a GP and optimize its kernel
hyper-parameters.
[Computationally cheap].

3. Analyze PTA data with Gaussian-process model:
The trained GP predicts the shape of the strain spec-
trum for our GW analysis.
[Computationally cheap].

We now briefly discuss steps 1 and 2. Step 3 is briefly
described in the results section.

Population synthesis

The orbital eccentricity and environmental couplings
of a population of SMBHBs do not directly impact the
merger-rate density. They effect the evolution of the bi-
naries and the frequency distribution of the characteristic
strain emitted by each source, hc(fgw). Thus, all popula-
tions share a common binary merger-rate density prescrip-
tion like that described in Simon and Burke-Spolaor [21],
which utilizes observations of galaxy stellar mass functions
(GSMFs), galaxy close-pair fractions (f pair), and black
hole-host galaxy relations (M −Mbulge) to infer the rate
density. To ease computational burden, a single measure-
ment of each observable was used: GSMF from Ilbert et al.
[22], fpair from Robotham et al. [23], andM−Mbulge from
McConnell and Ma [24]. For each realization, the value
of each observable was randomly drawn from a Guassian
with widths equal to the cited one-sigma uncertainty re-
gions, this method propagates observational uncertainties
through model inference.

A SMBHB’s orbital evolution from interactions with a
fixed, isotropic, unbound, cuspy stellar background are de-
scribed in Ravi et al. [25], which draws extensively on nu-
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FIG. 1. Characteristic strain spectra for binary populations un-
der various astrophysical conditions. Grey lines indicate sin-
gle population realizations, while red is the mean over realiza-
tions. Dashed blue shows a ∝ f−2/3 strain spectrum for ref-
erence. (a) {e0 = 0, ρ = 10M�pc−3}; (b) {e0 = 0.95, ρ =
10M�pc−3}; (c) {e0 = 0, ρ = 104M�pc−3}; (d) {e0 =
0.95, ρ = 104M�pc−3}

merical simulations from Quinlan [26], Sesana et al. [27],
and Sesana [28]. As in Ravi et al. [25], we anchor all bi-
nary evolution to a starting frequency of fgw = 10−12 Hz,
which is sufficiently low that any GW emission is outside
PTA sensitivity ranges. The initial eccentricity parameter,
e0, is set at this frequency, and is evolved across the PTA
band in accordance with whichever mechanism (stars or
GWs) dominates the orbital evolution.

To generate a population, we draw a finite number of
sources whose binary parameters match the merger-rate
density for each realization, with eccentricities that have
been evolved according to the prescribed environmental
conditions {e0, ρ}, where ρ is the mass density of stars at
the gravitational influence radius of the binary. We assume
that all binaries have the same initial eccentricity and are
embedded in a stellar distribution with the same density. In
future work we will study how varying the distribution of
environmental conditions across sources effects the perfor-
mance of our method.

Almost all (> 99%) of the GW strain in the PTA sen-
sitivity band (10−10 < fgw < 10−7 Hz) comes from less
than 2 × 105 sources. These sources are saved for each
realization. The characteristic strain spectrum of the GW
background, hc(f), is built up as the quadrature sum of the
strain from each source. The eccentricity of each source
determines how the strain is distributed across frequency,
with quasi-circular sources emitting mostly in the n = 2
harmonic of the orbital frequency, while more eccentric
sources emit across tens to hundreds of harmonics [29].
Figure 1 shows the characteristic strain spectra at the four
corners of the combined parameter space {e0, ρ} explored
in this work.
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Training the Gaussian process

Our work uses the George GP regression library [30].1

We train a separate GP at each sampling frequency of the
GW spectrum, from a base frequency of f = 1/T up in in-
crements of 1/T for a pre-defined number of modes, where
T is the span between the maximum and minimum TOAs
in the PTA dataset.2 While we assume that variation of the
strain across astrophysical parameter space is smooth, we
do not enforce that it is smooth across frequencies.

We construct the strain spectra for 100 population re-
alizations at each of 14 × 13 = 182 combinations in
{e0, ρ} parameter space, where e0 ∈ U [0.0, 0.95] and
log10(ρ/M�pc

−3) ∈ U [1, 4]. We then form a data vector
at each GW frequency, corresponding to the base-10 loga-
rithm of the mean squared characteristic-strain, log10〈h2

c〉,
for every set of dynamical conditions. Each data point has
an associated uncertainty corresponding to the log-space
standard deviation of the squared strain over the 100 pop-
ulation realizations.

To characterize the GP, we choose a Squared Expo-
nential (SE) kernel function with a flat, diagonal metric.
This stationary, infinitely differentiable function has tun-
able length-scale parameters which set the correlation be-
tween data points across parameter space, and in our case
has the form

k(~x, ~x′) = σ2
k exp

(
−(xi − x′i)2/2σ2

i − (xj − x′j)2/2σ2
j

)
,

(1)
where ~x, ~x′ are two coordinates in our 2-d {e0, log10 ρ}
parameter space, each dimension of the input coordinate
can have a separate variance σ2

i , σ2
j , and the kernel has an

overall variance scaling, σ2
k.3

The data vector at each frequency is used to train the
GP by mapping out the posterior distribution of the ker-
nel function parameters. We set the kernel parameters to
their maximum-a-posteriori values. An example is shown
in Fig. 2 for a GW frequency of 1/(30 yr), where the left
panel shows the coordinates of the training data (red points)
along with the prediction of the trained-GP. The right panel
shows the uncertainty in this prediction.

Figure 3 shows tests of the interpolation and extrapola-
tion fidelity of the GP at f = 1/(30 yr), achieved by re-
moving some points from the training data. Interpolation
performs very well, but extrapolation is poor, so we do not
use our GP model outside of the boundaries of the original
training data.4 Figure 3 also shows that there is no notice-

1 http://dan.iel.fm/george/current/
2 For realistic datasets most of the spectral information is confined to the

lowest few frequencies, but we model at least 20.
3 We investigated the impact of kernel choices on our results, and found that

both Matérn 3/2 and Matérn 5/2 kernels [31] give comparable posterior
recoveries with respect to the SE kernel.

4 Performance is graded on how far the removed points depart from the GP
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FIG. 2. Mean (left) and standard deviation (right) of a GP trained
on the strain spectrum at f = 1/(30 yr) ∼ 1 nHz. The training
spectra are constructed from 100 synthesized SMBHB popula-
tions at each of 182 different points in {e0, ρ} space (right, red
points), with kernel length scales of 10 and 0.83, respectively.
The uncertainty in the GP prediction is dominated by the intrin-
sic scatter in the simulations.

able difference in performance when fixing the kernel pa-
rameters to their maximum-a-posteriori values compared
to sampling from their posterior distribution. As we ex-
pand our GP model to more astrophysical influences in the
future, we will monitor this to assess whether kernel pa-
rameter sampling is also needed as part of our hierarchical
Bayesian pulsar-timing model.

Finally, for this study we are interested in the influence
of dynamical processes on the shape of the GW spectrum,
and not on the overall amplitude implied by merger-rate
density assumptions. Hence, before training we find the
mean amplitude of the {e0 = 0, ρ = 10M�pc

−3} simu-
lations at f = 1/yr, then divide all spectra by this ampli-
tude.

RESULTS

Our GP model fits into existing Bayesian analysis
schemes as an extension of the hierarchical model. Cur-
rent schemes expand the time-domain GWB signal onto a
Fourier basis, then marginalize over the Fourier amplitudes
with a Gaussian prior [32, 33]. This prior is parametrized
to have a variance that obeys e.g. (i) a power-law spec-
trum with amplitude and spectral index parameters; (ii) a

prediction, in units of the GP uncertainty. For interpolation all removed
points lie within the 1-σ region, while for extrapolation the removed points
start at ∼ 1-σ away, and depart farther from the GP prediction as we move
farther outside the boundaries of the training set.

http://dan.iel.fm/george/current/
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FIG. 3. Interpolation and extrapolation fidelity of the GP, trained
on only the blue points. These points with uncertainties are com-
binations of {e0, log10 ρ} along the downwards left-right diag-
onal of Fig. 2’s left panel, where the strain is varying fastest.
Faded red squares show data excluded from the training. Col-
ored regions are random draws from the trained GP. The left
column shows 10 random draws from the GP with each of 50
different kernel parameter values drawn from their posterior dis-
tribution. The right column is similar, except all 500 draws use
the maximum-a-posteriori kernel parameters.

turnover model with three ‘shape’ parameters [9]; (iii) a
free spectrum with a separate amplitude parameter per GW
frequency.

We use and extend model (iii) by placing a Gaussian
prior on the power spectrum at each GW frequency with a
mean and standard deviation from the GP prediction. We
numerically sample the power spectrum at each frequency
(n parameters) and the hyper-parameters of the GP model
({A, e0, log10 ρ}), for a GWB model space with n + 3
dimensions. To ensure efficient numerical sampling, we
perform a coordinate transformation such that the power
spectrum at each frequency is sampled as a zero-mean unit-
variance Gaussian [34]. The GP method is implemented
within the NX01 Bayesian PTA package [35],5 and we use
a parallel-tempering MCMC sampler with several bespoke
proposal schemes.6

We test the performance of our method in both the pres-
ence and absence of a detectable GW background. We use
two types of data sets: (1) a simplified dataset consisting of
an array of 18 pulsars whose positions and statistical noise
properties match those used in N16. These pulsars are con-
currently timed for 30 years with a total of 390 TOAs in
each. (2) A realistic dataset consisting of an 18-pulsar ar-
ray that emulates the N16 PTA in every way, with the same
noise properties and an identical observation schedule over

5 https://github.com/stevertaylor/NX01.
6 https://github.com/jellis18/PTMCMCSampler.

a ∼ 9 year baseline [36]. We calibrate this dataset to give
the reported 95% upper limit of 1.5× 10−15 on the ampli-
tude of an f−2/3 GWB power-spectrum at f = 1/yr. This
required us to inflate the TOA uncertainties by a factor of
1.4 across all pulsars.

Type-(1)— We create two type-(1) datasets with dif-
fering injected GWB spectra. First, we create 100
new population realizations with dynamical conditions
{e0 = 0.65, log10(ρ/M�pc

−3) = 3.35}, and in-
ject the mean characteristic-strain spectrum. This com-
bination of conditions was chosen to provide a strain-
spectrum turnover within the frequency coverage of a 30
year data span, so that both dynamical properties could
be constrained. We also deliberately excluded this sim-
ulation from the training data. Second, we inject a pure
f−2/3 power-law strain spectrum. In both cases, the over-
all amplitude scaling is set such that the Bayes factor for
spatial correlations & 105, because any inaccuracies in the
GP model are best illuminated with parameter estimation
in high signal-to-noise scenarios where the posterior un-
certainty is small and modeling inaccuracies will show as
systematic offsets.

The white noise was fixed at the level of the TOA un-
certainties, while the GWB signal and per-pulsar red-noise
parameter priors were uninformative. The resulting 2-d
marginalized posterior distributions in {e0, ρ} space are
shown in Fig. 4, where we see that the injected values lie
within the 68% credible regions in both cases. The pa-
rameter degeneracy arises because a population of highly-
eccentric binaries in a moderately-dense stellar environ-
ment can give a strain spectrum turnover at a similar fre-
quency as a lower eccentricity population in a more dense
stellar environment. Similar physical parameter degenera-
cies were observed in Chen et al. [37].

Type-(2)— No GWB signal is injected in this dataset,
since N16 reported no evidence for GWs. Instead, we per-
form astrophysical inference on this fake dataset as was
performed on the true dataset. The parameter priors were
as in the Type-(1) datasets above. Instead of searching for
a GWB amplitude with a prior that is uniform in log-space,
we anchor the amplitude with priors that agree with two
different astrophysical predictions at high GW frequen-
cies. These predicted amplitude distributions derive from
McWilliams et al. [38] (MOP14), and Sesana [39] (S13),
where the assumptions that led to them are explained in the
relevant papers, and contrasted in N16. They respectively
constitute an optimistic (log10A = −14.4 ± 0.26) and a
median (log10A = −15.0 ± 0.2) prediction of the GWB
amplitude at high frequencies.

The resulting 2-d marginalized posterior distributions in
{e0, ρ} space are shown in Fig. 5 for the different prior
assumptions. Under the assumptions of the MOP14 and
S13 amplitude priors, the emulated NANOGrav 9-yr data
favors eccentric SMBHBs that are coupled to dense stellar
distributions. This is because an f−2/3 power-law spec-
trum with MOP14 or S13 amplitudes would produce a

https://github.com/stevertaylor/NX01
https://github.com/jellis18/PTMCMCSampler
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tributions from employing our GP search model are shown as or-
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(solid), 95% (dashed), and 99.7% (dotted) credible intervals.
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FIG. 5. Astrophysical inference on an emulated NANOGrav 9-yr
dataset. The GWB amplitude at high frequencies is anchored to
the MOP14 and the S13 priors. The lines indicate the boundaries
of the 68% credible regions under different prior assumptions.
See the text for details and discussion.

GWB signal in excess of current constraints at low frequen-
cies. To be consistent with the absence of a GW signal, dy-
namical influences must attenuate the low-frequency GW
spectrum. Because it is larger, the MOP14 prior necessi-
tates stronger spectral attenuation and thus more extreme
dynamical conditions. With the more recent Sesana et al.
[40] amplitude prior (centered on log10A = −15.4) the
posterior distribution in e0 and log10 ρ would be flat and
uninformative. The choice of red-noise prior has a mini-
mal influence.

DISCUSSION

We have introduced a powerful new method for GW data
analysis, where a model for the stochastic GW strain spec-
trum is built entirely through Gaussian-process emulation
of population synthesis simulations. This is the first PTA
method capable of searching for the combined SMBHB
dynamical influences of stellar scattering encounters from
the loss-cone and evolving binary eccentricity. These ef-
fects are important for understanding SMBHB dynamics
[41], but are poorly constrained by current observations.
PTAs offer a more direct measurement of sub-parsec binary
evolution than is currently available. Further, our tech-
nique can be trivially expanded to incorporate additional
effects, such as accretion from a circumbinary disk, differ-
ent M−σ relations, or dynamical-friction timescales.

Our results for a dataset that precisely emulates the sen-
sitivity of the NANOGrav 9-year dataset indicate that the
MOP14 and S13 GWB amplitude predictions mildly favor
a population of eccentric SMBHBs evolving within dense
stellar distributions. The true dataset gives quantitatively
similar results, and will be explored further in a forthcom-
ing analysis [42].

Beyond pulsar-timing analysis, this method can be
adapted for LIGO or LISA population inference. Current
schemes perform demographic analysis to recover the dis-
tributions of compact-system properties with either a para-
metric function [43, 44], or using a histogram with bin
heights constrained by a GP prior [40, 44]. Linking these
distributions back to progenitor properties or evolutionary
channels has so far only been performed for discrete popu-
lation synthesis simulations [45]. With our technique, one
could use the histogram model with a GP prior trained on a
set of population synthesis simulations. This would allow
sampling of the continuous posterior distribution of pro-
genitor properties, such as metallicity or the efficiency of
common-envelope hardening. We will investigate this in
future work.

A notebook that allows the user to read in simula-
tions and construct their own GP model is available at
https://github.com/stevertaylor/gw pta emulator.
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