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Determining the nature of electronic states in doped Mott insulators remains a challenging task. In
the case of tetragonal La2−xSrxNiO4, the occurrence of diagonal charge and spin stripe order in the
ground state is now well established. In contrast, the nature of the high-temperature “disordered”
state from which the stripe order develops has long been a subject of controversy, with considerable
speculation regarding a polaronic liquid. Following on the recent detection of dynamic charge stripes,
we use neutron scattering measurements on an x = 0.25 crystal to demonstrate that the dispersion
of the charge stripe excitations is anisotropic. This observation provides compelling evidence for the
presence of electronic nematic order.

Doping holes into the the correlated insulator La2NiO4

leads to the destruction of commensurate antiferromag-
netic order and the formation of charge and spin stripes
[1–4]. With the recent evidence for ubiquitous charge-
density-wave (CDW) order in cuprate superconductors
[5, 6], the problem of understanding CDWs in corre-
lated systems continues to receive considerable atten-
tion. While there are important differences between the
S = 1

2 cuprates and the S = 1 nickelates, explaining
even the nonsuperconducting systems remains a chal-
lenge. There has been considerable experimental work
characterizing the spin and charge order of La2NiO4+δ

and La2−xSrxNiO4[4, 7, 8], and theoretical calculations
have captured various aspects of the ground state [9–13].
The situation is much less clear when one considers the
state from which the stripes develop on cooling.

On melting the charge stripes in a nickelate sample,
the conductivity increases [14–16]; however, these ma-
terials are, at best, “bad metals” [17], lacking coherent
quasiparticle states. Optical conductivity measurements
confirm the absence of a Drude peak, a standard signa-
ture of coherent conduction [14–16, 18]. Disorder does
not play a significant role, as the situation is nearly iden-
tical even when the dopant ions have long-range order,
as in La2NiO4.133 [15]. Given these conditions, the stan-
dard picture of charge-density-wave order is completely
inapplicable, as it is based on a model of nearly-free elec-
trons interacting with the lattice [19, 20]. Even if it were,
there is no model for a state of fluctuating CDWs in two
or more dimensions [21]. Discussions of the disordered
state have generally invoked a liquid of polarons [22–26]

In this Letter, we present inelastic neutron scatter-
ing measurements characterizing charge-stripe fluctua-
tions at temperatures above the spin-ordering transition
in La2−xSrxNiO4 (LSNO) with x = 0.25. The exis-
tence of such fluctuations in LSNO with x = 0.33 has
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been inferred from a study of the temperature depen-
dence of Debye-Waller factors [27], and the first direct
evidence was obtained by Anissimova et al. [28]. In
the present case, we study a regime where the corre-
lation lengths associated with charge stripes are short,
so that there is no long-range translational symmetry
breaking. At the same time, we show that the disper-
sion of the charge-stripe fluctuations is anisotropic, with
a lower effective velocity along the modulation direction,
comparable to that of transverse acoustic phonons. This
anisotropy establishes that the electronic rotational sym-
metry within the NiO2 planes is reduced to C2, whereas
the atomic structure retains C4 symmetry. Hence, the
high-temperature electronic phase appears to have ne-
matic order [29–31].

The charge and spin stripes that develop in LSNO run
diagonally with respect to the square lattice of Ni atoms
in the NiO2 planes. While the average crystal structure
is tetragonal (space group I4/mmm) in the relevant dop-
ing range [32], it is easier to characterize the stripe wave
vectors if we use a unit cell of doubled volume (space
group F4/mmm); for x = 0.25, this corresponds to lat-
tice parameters a = b = 5.42 Å and c = 12.64 Å. With
this choice, the charge and spin wave vectors are

qco = (2ε, 0, 1), qso = (1 ± ε, 0, 0), (1)

where the coordinates are in reciprocal lattice units
(2π/a, 2π/a, 2π/c); there is also a stripe twin domain ro-
tated by 90◦ in the NiO2 plane. For the fundamental
Bragg peaks, G = (H,K,L) the indices must be all even
or all odd. It follows that the allowed superlattice peaks
in the (H,K, 0) reciprocal plane are

G′ ± qco = (2m+ 1 ± 2ε, 2n+ 1, 0), (2)

G± qso = (2m+ 1 ± ε, 2n, 0), (3)

with m,n = integers. These positions are illustrated in
Fig. 1(a). For the case of x = 0.33, where ε = 0.33 [2],
the charge and spin peaks overlap, making it difficult to
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FIG. 1. (color online). (a) Schematic diagram indicating relative locations of fundamental Bragg peaks (black solid circles),
charge-order peaks (red hollow diamonds) and spin-order peaks (black hollow squares) in the (H,K, 0) plane of La1.75Sr0.25NiO4.
Shaded area illustrates the scanning range where data have been collected at 10 K. White arcs represent aluminum powder rings.
(b) Constant energy slice of (H,K, 0) plane at 10 K. Elastic scattering intensities have been integrated with −0.2 ≤ L ≤ 0.2,
−1.5 ≤ E ≤ 1.5 meV. (c) Scans through magnetic peaks along Q = (1,K, 0). (d) Scans through charge-order peaks along
Q = (H, 3, 0). (e) Inelastic neutron scattering (integraged over 2 ≤ E ≤ 5 meV, −0.2 ≤ L ≤ 0.2) measured at Tso = 140 K.
Bright spots centered at fundamental Bragg wave vectors represent acoustic phonons. Weak spots circled in yellow (green)
represent the dynamic spin (charge) stripes at small (large) Q.

establish the relative contributions to each peak. For this
reason, we have chosen to focus on x = 0.25 (with ε =
0.28 [28]) where the charge and spin peaks are distinct.

Neutron scattering measurements were carried out on
the time-of-flight Hybrid Spectrometer (HYSPEC) at
BL-14B of Spallation Neutron Source, Oak Ridge Na-
tional Laboratory [33]. The La1.75Sr0.25NiO4 single-
crystal sample, with a mass of ∼ 10 g, was grown by
the traveling-solvent floating zone method at Brookhaven
and was characterized previously [28]. For this experi-
ment, it was mounted in a Displex closed-cycle cryostat
with the (HK0) plane horizontal and c axis vertical, per-
pendicular to the incident neutron beam. The incident
energy was 50 meV. Data analysis was performed with
the MANTID [34] and DAVE [35] software packages. For
further details, see [36].

Characterizations of the spin and charge scattering are
summarized in Fig. 1. The magnetic peaks should be
strong at small Q and decrease in intensity at large Q

due to the fall of the magnetic form factor [28]. In con-
trast, the charge order scattering is detected through
associated atomic displacements, for which the inten-
sity should grow roughly as Q2. In the map of low-
temperature elastic scattering shown in Fig. 1(b), we
expect that the peaks within the small and large cir-
cles should correspond to spin and charge order, respec-
tively. This is confirmed by looking at particular line
cuts: Fig. 1(c) shows spin order peaks at (1, ε, 0) and
(1, 2− ε, 0) with no significant weight at the charge order
positions (1, 1 ± 2ε, 0), while Fig. 1(c) shows only charge
order peaks at (5 ± 2ε, 3, 0); Gaussian peak fitting gives
ε = 0.28. From the map of low-energy inelastic scattering
obtained at 140 K, shown in Fig. 1(e), we see that the spin
fluctuation scattering also falls off with Q, as expected,
so that the incommensurate peaks in the large circle must
correspond to charge stripe fluctuations. From here on,
we will focus on the scattering near Q∗co = (4.44, 3, 0).

The temperature dependence of the elastic and low-
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FIG. 2. (color online). (a) Elastic scattering (−0.2 ≤ L ≤
0.2, −1 ≤ E ≤ 1 meV) associated with static charge or-
der along (H, 3, 0) measured at different temperatures. The
temperature-independent peaks around (5.1, 3, 0) are powder
diffraction from the aluminum sample holder. (b) Inelas-
tic signal from dynamical charge order (−0.2 ≤ L ≤ 0.2,
2 ≤ E ≤ 5 meV) measured at different temperatures. In
both (a) and (b), intensities are normalized to incident flux.
Data sets have been shifted for clarity; solid lines represent
Gaussian fits. (c) Temperature dependence of the integrated
intensity of static (blue filled circles) and dynamic (red filled
squares) charge-stripe correlations. For comparison, triple-
axis results of static charge order (blue open circles) from
Anissimova et al.[28] are included.

energy inelastic scattering at Q∗co are presented in the
form of line cuts in Fig. 2(a) and (b). From the fitted
Gaussian peaks, indicated by the solid lines, we obtain
the integrated elastic and inelastic intensities that are
plotted vs. temperature in Fig. 2(c); for comparison, the
previous triple-axis measurements of the elastic charge-
order intensity are included [28]. While it is established
that the charge modulation is unidirectional [37, 38],
the presence of finite correlation lengths for charge or-
der within and between planes [3, 39] means that we
have, at best, a stripe (or smectic) glass, due to the
quenched disorder associated with the Sr dopant ions.
The elastic charge-order scattering decreases rapidly as
the spin order disappears at Tso ≈ 140 K. Previous stud-
ies have shown that, above this point, correlation lengths
shrink [39–42] and finite optical conductivity turns on
[15, 16, 43], indicating the importance of fluctuations
and the absence of long-range order. Consistent with
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FIG. 3. (color online). Constant energy slice (2 ≤ E ≤
5 meV, −0.2 ≤ L ≤ 0.2) around the charge-stripe peak at
Q∗

co = (4.44, 3, 0) at 160 K, plotted in the (HK0) plane. The
strongest scattering, centered at G = (4, 4, 0) and (2, 4, 0),
comes from acoustic phonons. White dashed lines and letters
indicate the direction of corresponding slices in Fig. 4.

this, the charge-stripe fluctuations detected by inelastic
scattering only become significant above Tso. (The small
but finite “elastic” signal above 210 K appears to come
from integration over quasi-elastic scattering.) While any
semblance of proper smectic order is certainly destroyed
above Tso [44], there remains the possibility of vestigial
nematic order [31].

In an actual liquid-crystal system, one would distin-
guish the nematic from the smectic phase by the devel-
opment of anisotropic peak widths [45]. Here, the finite
width due to disorder prevents that; instead, we look for
anisotropy in the dispersion of the charge stripe fluctua-
tions. Of course, the crystal’s symmetry is tetragonal,
and without a symmetry-breaking field, we can never
observe long-range nematic order; nevertheless, by mea-
suring at a wave vector corresponding to charge-density
modulations, we can selectively look at domains with
the same modulation orientation. If we can resolve an
anisotropic dispersion, then we conclude that the system
has spontaneously broken the local rotational symmetry.

To obtain meaningful data, it is necessary to measure
at locations and temperatures where the signal is signif-
icant. Figure 3 shows a reciprocal-space map of low-
energy excitations in the vicinity of Q∗co measured at
160 K, where the fluctuation intensity initially rises to
a reasonable level. The dashed lines denote the paths
of the energy vs. Q slices plotted in Fig. 4. Measure-
ments at 160 K along and transverse to the modulation
direction are plotted in Fig. 4(c) and (d), respectively; in
each case, the stripe fluctuations are circled, and in 4(d)
they sit between acoustic phonons dispersing from neigh-
boring Bragg peaks (see Fig. 3). Figures 4(e) and (f)
show constant-energy cuts through the dispersion, inte-
grated over 1.5-meV bands. (For similar results at 220 K,
see [36].) The data in Fig. 4(a) and (b) show acoustic
phonons at fundamental Bragg reflections for reference.
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FIG. 4. (color online). Low-energy excitations of lattice and charge stripes in La1.75Sr0.25NiO4 at 160 K. (a) Acoustic phonons
dispersing from the Bragg peak Q = (4, 2, 0) along [100], integrated over 1.9 ≤ K ≤ 2.1, and (b) from Q = (4, 4, 0) along
[010], integrated over 3.75 ≤ H ≤ 4.25. (c,d) Scattered intensity as a function of E vs Q through Q∗

co along [100], integrated
over 2.9 ≤ K ≤ 3.1 (c), and along [010], integrated over 4.1 ≤ H ≤ 4.7 (d). Charge-stripe fluctuations are indicated by white
ovals. (e) Cuts through the charge stripe fluctuations in (c), integrated over fixed energy bands, as noted in the labels; (f)
cuts through the charge stripe fluctuations in (d). In all cases, data have been integrated over −0.2 ≤ L ≤ 0.2. In (a)-(d), a
Q-independent incoherent elastic scattering contribution, broadened by instrumental energy resolution, has been subtracted.
Lines through the data points in (e) and (d) are fitted Gaussian peaks plus background; in (e), the background is linear in H,
while in (f), the background is a constant plus the tail of a Gaussian peak at large K to account for the neighboring acoustic
phonons.

Note that the stripe fluctuations have an intensity above
background that is about two orders of magnitude weaker
than that of the acoustic modes (whose true intensity is
masked by saturation).

The window for viewing the stripe fluctuations is
small—by an energy of 9 meV or so they run into the
transverse acoustic modes dispersing from the (4, 4, 0)
Bragg peak (see Fig. 3). It is notable that we do not
see any significant interaction between the stripe fluctua-
tions and the acoustic mode. In contrast to the soft-mode
behavior detected in association with the charge-density-
wave order in underdoped YBa2Cu3O6+x [46, 47], we ap-
pear to have overlapping dispersions. The slowest disper-
sion is in the direction perpendicular to the stripes, where
the effective velocity is comparable to that of transverse
acoustic modes shown in Fig. 4(b). As this is the modu-
lation direction, it is also associated with the observation
that the incommensurability ε increases towards 1/3 as
the temperature approaches Tco [39, 48]. The velocity
parallel to the stripes is not resolved but might be com-
parable to that of the longitudinal acoustic mode that
is resolved at energies above 10 meV in Fig. 4(a) and
(b). Note, however, that the comparison with phonon
velocities is only to provide relevant scale. The specific
anisotropy of the fluctuations is not consistent with what

one observes for normal acoustic phonons about a struc-
tural superlattice peak.

The combination of the characteristic modulation wave
vector and the dispersion anisotropy provide a strong
case for the presence of electronic nematic order. This
is of particular significance given the four-fold rotational
symmetry of the average crystal structure. (Note that
some of the best evidence for nematic order in cuprates
occurs in samples where the crystal structure has reduced
rotational symmetry [49].) The nematic order in this case
is formed of fluctuating charge stripes, as in the original
proposal by Kivelson, Fradkin, and Emery [29]. The re-
sponse at 160 K is compatible with nematic order as a
vestigial version of static charge density waves [31] sim-
ilar to what has been observed by scanning tunneling
microscopy in Bi2Sr2CaCu2O8+δ [50, 51]. The charge
stripe correlations certainly involve a coupling to the lat-
tice, as without nuclear displacementes we would not be
able to detect the charge stripes with neutrons. In a
sense, this is polaronic; however, it is not made up of
individually dressed holes, but is, instead, an emergent
collective state, one not easily captured by current ab
initio techniques. We hope that these results will inspire
new theoretical efforts and further experimental develop-
ments.
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