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We reformulate the projected imaginary-time evolution of Full Configuration Interaction Quan-
tum Monte Carlo in terms of a Lagrangian minimization. This naturally leads to the admission of
polynomial complex wavefunction parameterizations, circumventing the exponential scaling of the
approach. While previously these functions have traditionally inhabited the domain of Variational
Monte Carlo, we consider recent developments for the identification of deep-learning neural net-
works to optimize this Lagrangian, which can be written as a modification of the propagator for the
wavefunction dynamics. We demonstrate this approach with a form of Tensor Network State, and
use it to find solutions to the strongly-correlated Hubbard model, as well as its application to a fully
periodic ab-initio Graphene sheet. The number of variables which can be simultaneously optimized
greatly exceeds alternative formulations of Variational Monte Carlo, allowing for systematic im-
provability of the wavefunction flexibility towards exactness for a number of different forms, whilst
blurring the line between traditional Variational and Projector quantum Monte Carlo approaches.

The description of quantum many-body states in
strongly-correlated systems is central to understanding
a wealth of complex emergent phenomena in condensed
matter physics and quantum chemistry. The problem is
well defined; the Hamiltonian is known, and the solution
is a linear superposition of all possible classical configu-
rations of particles. However, this conceals exponential
complexity in the wavefunction which in general prohibits
both storage and manipulation of these linear coefficients.

To deal with this exponentially large Hilbert space,
one approach is to sample the space stochastically. For
studies of the ground state of quantum systems, this is
broadly split into two separate categories, Projector and
Variational Monte Carlo (PMC / VMC)[1, 2]. In the
first, a decaying function of the Hamiltonian is contin-
ually applied to a stochastic representation of the full
wavefunction. This projects out the higher energy com-
ponents, leaving a stochastic sampling of the dominant,
(generally ground-state) eigenfunction. By contrast, in
VMC a polynomial-complex approximate wavefunction
ansatz is imposed, generally with a small number of vari-
ational parameters. State-of-the-art methods to optimize
this wavefunction then involve sampling the gradient and
hessian of the energy with respect to the parameters in
the tangent space of the current wavefunction. This is
done by projecting into and sampling from the exponen-
tial configurational space. Once a stochastic representa-
tion of these quantities is obtained, updates to the wave-
function parameters are found by a variety of iterative
techniques until convergence of this non-linear parame-
terization is achieved.
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One promising emerging technique is Full Configu-
ration Interaction Quantum Monte Carlo (FCIQMC),
a projector quantum Monte Carlo which stochastically
samples both the wavefunction and the propagator in
Fock space[3, 4]. By exploiting sparsity inherent in the
wavefunction of many representations of quantum sys-
tems, essentially exact results can be obtained with only
small fractions of the Hilbert space simultaneously occu-
pied. However, despite often admitting highly accurate
solutions for systems far out of reach of many alternative
approaches, the method is formally exponentially scal-
ing with system size, albeit often weakly. In order to
advance to larger and condensed phase systems, one ap-
proach is to exploit the fact that electron correlation is,
in general, inherently local. Two-point correlation func-
tions (away from criticality) will decay exponentially with
distance, whilst the screening of the Coulomb interac-
tion in bulk systems will result in local entanglement of
nearby electrons, with distant electrons behaving increas-
ingly independently[5].

Following the success of the FCIQMC approach for fi-
nite systems, we aim to exploit this locality, to formally
contain the scaling to polynomial cost. This is done
by imposing a non-linear, yet systematically improvable
ansatz of the form of a Correlator Product State (CPS),
which explicitly correlates plaquettes of locally neigh-
bouring degrees of freedom[6, 7]. Related wavefunctions
have also been called Entangled Plaquette States or Com-
plete Graph Tensor Networks to stress their connection
to tensor network states[8–11]. In formulating this, we
develop connections between Projector and Variational
quantum Monte Carlo, and propose new methodology
for the optimization of arbitrary non-linear wavefunction
parameterizations. This approach is shown to confer a
number of benefits compared to state-of-the-art wave-
function optimization[12–16]. The number of parame-
ters which can be handled even brings into scope more
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sophisticated wavefunctions, including other tensor net-
work parameterizations[17, 18]. We apply this approach
to a number of model and ab-initio systems, showing that
systematic improvability and exceedingly large parameter
spaces can be handled within these complex optimization
problems.
The CPS wavefunction defines ‘correlators’ as diag-

onal operators (to optimize) which directly encode the
entanglement within sets of single-particle states (which
in this work are exclusively neighbouring), as Ĉλ =
∑

nλ
Cnλ

P̂nλ
, where P̂nλ

= |nλ〉 〈nλ| is the projection
operator for the set of all many-body Fock states nλ in
the correlator λ, with adjustable amplitudes Cnλ

. The
CPS is then written as a multi-linear product of correla-
tors acting on a chosen reference state, |Φ〉. In this work,
this reference state is a single Slater determinant (which
can also be variationally optimized), but other reference
states are possible[19, 20]. The final CPS wavefunction is
therefore represented as |ΨCPS〉 =

∏

λ Ĉλ |Φ〉. It can be
shown that a number of different phases and wavefunc-
tions can be expressed in this form, including RVB and
Laughlin wave functions[6]. As the number of degrees of
freedom in the system grows, the complexity of the wave-
function grows only linearly. Additionally, this choice
of low-rank factorization of the wavefunction is system-
atically improvable with increasing correlator size as it
recovers longer-ranged entanglement effects, but this ad-
mits many variables to optimize. VMC techniques have
been used previously for similar tensor network forms,
but the growth of parameters has led to limited success
in recovering long-range entanglement or thermodynamic
limit results[17, 18]. We now consider a new, efficient ap-
proach to handle these many parameters, derived in part
from the FCIQMC approach, which can be considered as
the limit of a single large correlator.
Combining PMC and VMC.– The FCIQMC (and some

other PMC[21]) methods are simulated through stochas-
tic dynamics given by

|Ψ0〉 = lim
k→∞

(1− τ(Ĥ − ÎE0))
k|ψ(0)〉, (1)

with τ chosen to be sufficiently small, where Ψ0 is the
ground state of the system, and E0 is the self-consistently
obtained ground state energy[3]. This can be considered
both as a first-order approximation to imaginary time dy-

namics as e−βĤ |ψ(0)〉, or as a power method to project
out the dominant, lowest energy eigenvector of Ĥ [22]. Al-
ternatively, a VMC perspective considers finding the vari-

ational minimum of the Ritz functional, 〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉 , through

optimization of the wavefunction parameters.
These approaches can be shown to be analogous by

considering the minimization of a positive-definite La-
grangian,

L [Ψ(Zσ)] = 〈Ψ|Ĥ |Ψ〉 − E0

(

〈Ψ|Î|Ψ〉 −A
)

, (2)

where normalization (A) is enforced by a Lagrange mul-
tiplier, which at convergence is given by E0. It is simple
to show that the minimum of this functional is the same
as that given by the Ritz functional. We can consider
a simple gradient descent minimization of all variational

parameters, {Zσ} in Eq. 2, with step size τk, as

Z(k+1)
σ = Z(k)

σ − τk
∂L

[

Ψ(k)
]

∂Zσ

. (3)

Projecting the equations into the full Hilbert space of
configurations, {|m〉}, we obtain

Z(k+1)
σ = Z(k)

σ − τk
∑

nm

〈
∂Ψ(k)

∂Zσ

|m〉(Hmn − E(k)δmn)〈n|Ψ
(k)〉.(4)

If the chosen wave function is an expansion of linearly
independent configurations, then this will return exactly
the ‘imaginary-time’ dynamics of Eq. 1 and the FCIQMC
master equations, demonstrating the deep connection be-
tween imaginary-time propagation, gradient descent and
the power method[23].
However, here we aim to go beyond this. In keeping

with FCIQMC, the summations are replaced by random
samples of both the wavefunction and Hamiltonian con-
nections. The sum over {n} is stochastically sampled
via a Metropolis Markov chain, to evaluate a stochastic
representation of the wavefunction[22, 24–27]. Each iter-
ation consists of 100,000-200,000 random samples of the
wavefunction. For each, a small selection of configura-
tions, {m}, are sampled from the set of non-zero connec-
tions via Hmn in the manner of FCIQMC, and unbiasing
for the probability with a computed normalized gener-
ation probability[28, 29]. Furthermore, the derivatives

〈∂Ψ
(k)

∂Zσ

|m〉 can be efficiently evaluated from the respective

wavefunction amplitudes 〈Ψ(k)|m〉. Technical details on
the sampling of this gradient can be found in the supple-
mentary material.
This stochastic gradient descent (SGD) of the La-

grangian results in an iteration cost that is independent
of the size of the Hilbert space and thus renders this
methods inherently suitable for large scale systems. It
also admits a number of advantages over state-of-the-art
VMC optimization[12–14], such as the avoidance of the
construction of matrices in the tangent space, whose sam-
pling and manipulation becomes a bottleneck for large
numbers of parameters. Whilst Krylov subspace tech-
niques have been proposed to circumvent this by project-
ing down to more manageable spaces[15], ill-conditioning
can limit the efficiency of this approach[16]. Further-
more, diagonalization of the randomly sampled matri-
ces required in some optimizations can lead to biases in
the final parameters[30, 31]. Our approach also bears
similarities with Stochastic Reconfiguration (SR)[13, 14],
which can also be considered an imaginary time propaga-
tion that differs from SGD in its definition of the metric
for the updates[32]. Due to this, SR also requires pro-
jection of the equations into the tangent space of the
current wavefunction and stabilization of the resultant
matrix equations[14]. However, the proposed matrix-
free stochastic application of Eq. 3 describes a quasi-
continuous optimization, where the error bar at conver-
gence represents both the stochastic error in the sam-
pling, and fluctuations in the wavefunction. In addi-
tion, the dynamic also provides a straightforward route
to unbiased computation of the two-body reduced density
matrix[33, 34], Γpq,rs = 〈Ψ|a†pa

†
qasar|Ψ〉. By evaluating
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〈Q〉 = Tr
[

ΓQ̂
]

, arbitrary 1- and 2-body static proper-

ties can be found. This includes the energy, spin and
magnetic properties which here are computed from the
density matrix, rather than from the local energy as is
common in VMC.
However, similar SGD approaches have been con-

sidered before with little success for large numbers of
variables, due to the slow convergence of the param-

eters as O
(

1
k
+ σ√

k

)

where σ is the variance in the

gradient[35, 36]. Improving on this involves advances
in SGD methods, used in the field of deep learning al-
gorithms of neural networks[37, 38]. Analogously, these
networks represent a flexible non-linear function with pa-
rameters to be optimized via minimization of a cost func-
tion, often achieved via SGD schemes similar to the one
in Eq. 3[39, 40].
The convergence can be accelerated via the addition

of a ‘momentum’, whereby the update retains a mem-
ory of the previous updates. Propagation then results in
the accumulation of velocity in the direction of persistent
decrease in energy, thereby accelerating the update in
directions of low curvature over multiple iterations[41],
formally accelerating the convergence rate to a second-

order O
(

1
k2 + σ√

k

)

. Mathematically, the stochastic pro-

jection is given by a monic polynomial of the propagator,
such that Ψ

(k) = pkA (A)Ψ(0). In the SGD scheme of
Eq. 1, this is akin to the power method. However, the
optimal projection will be a polynomial approximation
to a function whose value at the desired eigenvalue of the
propagator is one, and whose maximum absolute value in
the range of the rest of the spectrum is minimized. This
is best represented by using a shifted and scaled Cheby-
shev polynomial approximation to the projection. The
success of the Lanczos approach as a second-order opti-
mization, as well as other deterministic projections can
also be rationalized in this fashion[42, 43].
An optimal version of this projector can be formulated

as Nesterov’s accelerated approach[44], whereby the se-

quence λ0 = 0, λk = 1
2 + 1

2

√

1 + 4λ2k−1, γk = 1−λk

λk+1
is

defined and starting at an initial point Z
(1)
σ = Y

(1)
σ , the

algorithm stochastically iterates the equations[45],

Y (k+1)
σ = Z(k)

σ − τk
∂L

[

Ψ(k)
]

∂Zσ

(5)

Z(k+1)
σ = (1− γk)Y

(k+1)
σ + γkY

(k)
σ , (6)

for k ≥ 1. While an optimal projection overall, this is no
longer a gradient descent scheme, and as such there is no
requirement that each iteration will decrease the energy,
and instabilities can be observed[46, 47]. To mitigate this
behaviour, we have found it beneficial to include a damp-
ing for the momentum, d, as γk → γke

− 1
d
(k−1).[46, 48]

With a suitably chosen damping parameter the rate
of convergence of the optimisation should not be hin-
dered, since this is dominated in the latter stages by the
σ√
k
term for both accelerated and conventional gradient

descent[49].
The remaining arbitrariness concerns the step size (or

‘learning rate’) τk. Whilst decreasing the step size gener-

ally improves robustness, it slows convergence and in-
creases autocorrelation time[39, 40]. We found opti-
mal convergence and accuracy achieved with a deep-
learning technique denoted RMSprop[50], an adaptive
step size method which dynamically estimates an inde-

pendent τ
(k)
Zσ

for each parameter. This gives τ
(k)
Zσ

=

η
(

RMS [gZσ
]
(k)

)−1

, where η is a global parameter for

all variables, and RMS [gZσ
]
(k)

represents the root mean
square (RMS) of previous gradients for the variable up

to the current iteration, RMS [gZσ
]
(k)

=
√

E
[

g2Zσ

]

+ ǫ,

evaluated by accumulating an exponentially decaying av-
erage of the squared gradients of the Lagrangian, g,

E
[

g2Zσ

](k)
= ρE

[

g2Zσ

](k−1)
+ (1− ρ) g2Zσ

. The small
constant ǫ is added to better condition the denominator
and ρ is the decay constant. This dynamically adaptive,
parameter-specific step-size, acts much like a precondi-
tioner for the system, and allows the optimisation to take
larger steps for those parameters with small and consis-
tent gradients, and vice versa. This ensures robustness
of the algorithm to large changes in gradients due to the
stochastic nature of the gradient evaluation.
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FIG. 1: Convergence of CPS with O[105] parameters for SGD
and accelerated scheme with RMSProp algorithm for the 98-site
(tilted) 2D Hubbard model at U = 8t. GFMC energy is taken
from Ref. 51. Inset shows fluctuations both in the statistical
sampling of expectation values, and in the variation of the

parameters.

Results.– The demonstration of the ability of the algo-
rithm to converge wavefunctions with many parameters
is shown in fig. 1, which considers a 98-site 2D Hubbard
model at half-filling, with U/t = 8. In this study, inde-
pendent, overlapping five-site correlators centred on every
site in the lattice were chosen to correlate with nearest
neighbours, allowing up to ten-electron short-ranged cor-
relation to be directly captured, as well as long range
correlation and symmetry-breaking through coupling be-
tween the overlapping correlators and the optimization
of the Slater determinant. The lattice and tiling of these
correlator plaquettes is depicted in the supplementary
materials. Accurate results for this system are given
by Greens-function Monte Carlo (GFMC)[51]. Our CPS
captures 97.9% of this correlation energy, with the re-
maining likely to be due to the lack of direct long-range
two-body correlation. However, this parameterization
still requires the simultaneous optimization of over 105
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parameters, beyond the capabilities of most VMC imple-
mentations, and demonstrates a striking advance in the
rate of convergence afforded by the accelerated algorithm.
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FIG. 2: Convergence of energy for a range of ΨCPS for 1× 22
Hubbard model. VMC Linear Method and DMRG energies are

taken from Ref.[52]. Error bars are too small to be visible.

To consider the systematic improvability of the CPS
ansatze, we consider the 1D, 22-site Hubbard model,
such that benchmark data can be found from the Density
Matrix Renormalization Group (DMRG), which can be
made numerically exact for this 1D system[52]. Results at
half filling and U = 4t are shown in fig. 2. For a wavefunc-
tion of three-site overlapping correlators and a fixed, non-
interacting reference, we find a variationally lower result
than previously published for an identical parameteriza-
tion via Linear Method optimization[12, 52]. This could
be due to the bias from the non-linear operations (diago-
nalization) of random variables present in these alternate
algorithms[30, 31]. We also investigate how increasing the
size of the correlators in order to directly capture longer-
ranged many-body correlation, as well as optimizing spin-
polarized (ΦUHF ) or non-collinear (ΦGHF ) Slater deter-
minants rather than a paramagnetic orbital component
(ΦRHF ) affects the quality of the wavefunction. The in-
creased flexibility of this democratic wavefunction gives
rise to systematic convergence towards DMRG with very
small errorbars, despite requiring over quarter of a million
variables.
Ab-initio systems can also be well treated in the same

vein; stochastically sampling from both the configuration
space of the wavefunction and from its O[N4] connected
configurations in Eq. 4, which are now far larger than
found in the Hubbard model due to long-range interac-
tions. We consider the symmetric dissociation of H50,
a molecular model for strongly-correlated systems and a
non-trivial benchmark system[54]. This system has been
treated not only with conventional quantum chemistry
methods such as Coupled Cluster (CC) (which fail to con-
verge at stretched bond-lengths beyond 2.0a0)[53], but
also strongly-correlated approaches including DMFT and
other embedding methods[55–57], due to the availability
of numerically exact DMRG values for comparison[53].
We parameterise our CPS with 5-atom overlapping corre-
lators, and both a fixed unpolarized reference, or stochas-
tically optimised unrestricted reference determinant. At
stretched bond lengths, nearly all of the DMRG correla-
tion energy is captured, as the correlation length spans
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FIG. 3: Percentage of DMRG correlation energy captured by
ΨCPS for the symmetric dissociation of a linear chain of 50

hydrogen atoms in a STO-6G basis. Numerically exact DMRG, as
well as high-level correlated quantum chemical methods of

Møller-Plesset perturbation theory (MP2), coupled-cluster up to
double excitations (CCSD) and with perturbative triple

excitations (CCSD(T)) are included, with values taken from
Ref.[53]. The largest deviation in the total energy compared to
DMRG across all bond lengths shown is 1.1kcal/mol per atom.

few atoms, and on-site repulsion dominates. However,
as the bond length decreases, a successively smaller per-
centage of the DMRG correlation energy is captured, as
the entanglement of the electrons span larger numbers of
atoms, as can also be seen in the larger bond dimension
required of DMRG at these geometries[53]. Despite this,
the correlation energy is so small at these lengths, that
the maximum error in the total energy is only 1.1kcal/mol
per atom, achieving chemical accuracy for the stretching
of this system.

Fully periodic localized orbitals can also be used to
construct a Fock space in which to form a CPS, and here
we consider an infinitely periodic graphene sheet with
4 × 4 k-point sampling[58]. From a double-zeta periodic
Gaussian basis, we choose one localized, translationally
invariant 2pz orbital centred on each carbon atom. Over-
lapping correlators consisting of the atoms on each hexag-
onal six-membered ring can then be constructed and the
full Hamiltonian projected into this low-energy space, in-
cluding a potential from the core electrons at the Hartree–
Fock level[59]. A generalized reference determinant is
then stochastically optimized along with the correlators,
giving a wavefunction parameterization of 67,584 param-
eters – we believe the largest number of non-linear param-
eters for an ab-initio system to date. This is equivalent
to a quantum chemical calculation of a complete active
space of 32 orbitals, which is beyond that which could be
treated by conventional techniques. This spans the domi-
nant strong correlation effects, but precludes high-energy
many-body dynamic correlation and screening.

From the sampled density matrix, we can construct
the spin correlation function to analyse the extent to
which spin fluctuations among the π/π∗-bands around
the Fermi level affect the magnetic order of the sys-
tem. The spin correlation functions are constructed from
two-point functions, rather than from symmetry-breaking
in the wavefunction, and show a rapid decay of anti-
ferromagnetic correlations which only substantially affect
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nearest neighbours (fig. 4).

FIG. 4: Spin correlation function 〈ΨCPS|Si · Sj |ΨCPS〉 of
Graphene in the pz space with a six-site CPS (with i as the

atomic site with maximal spin)[60].

Conclusions.– In this work we have presented a novel
approach to sample and optimize arbitrary non-linear
wavefunctions of many-body quantum systems. The opti-
mization is written as an accelerated propagator inspired
by ideas from developments in deep learning algorithms
and the FCIQMC approach. This allows for large num-
bers of parameters to be handled, and systematically im-
provable Fock-space wavefunctions to be used in both lat-
tice and ab initio systems.
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and G. Ortiz, Phys. Rev. Lett. 79, 1173 (1997).

[36] H. Robbins and S. Monro, Ann. Math. Statist. 22, 400
(1951).

[37] M. A. Nielsen, Neural Networks and Deep Learning (De-
termination Press, 2015).

[38] V. Dunjko, J. M. Taylor, and H. J. Briegel, Phys. Rev.
Lett. 117, 130501 (2016).

[39] D. R. Wilson and T. R. Martinez, in Neural Networks,
2001. Proceedings. IJCNN ’01. International Joint Con-
ference on, Vol. 1 (2001) pp. 115–119 vol.1.

[40] R. A. Jacobs, Neural Networks 1, 295 (1988).
[41] N. Qian, Neural Networks 12, 145 (1999).
[42] J. Cullum and R. Willoughby, Lanczos algorithms

for large symmetric eigenvalue computations, Vol. 2
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