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The existence of closed loops of degeneracies in crystals has been intimately connected to as-
sociated crystal symmetries, raising the question: what is the minimum symmetry required for
topological character, and can one find an example? Triclinic CaAs3, in space group P 1̄ with only
a center of inversion, has been found to display, without need for tuning, a nodal loop of accidental
degeneracies with topological character, centered on one face of the Brillouin zone that is otherwise
fully gapped. The small loop is very flat in energy, yet is cut four times by the Fermi energy, a
condition that results in an intricate repeated touching of inversion related pairs of Fermi surfaces at
Weyl points. Spin-orbit coupling lifts the fourfold degeneracy along the loop, leaving trivial Kramers
pairs. With its single nodal loop that emerges without protection from any point group symmetry,
CaAs3 represents the primal “hydrogen atom” of nodal loop systems.

Nodal loop semimetals (NLSs) represent the most del-
icate type of topological phase in the sense that they
arise from a closed loop of accidental degeneracies in the
Brillouin zone. In some ways they complement the topo-
logical character of Weyl semimetals1 by displaying sur-
face Fermi arcs or Fermi lines, or both. Several struc-
tural classes of NLSs have been identified, always asso-
ciated with specific space group symmetries that enable,
or in common parlance protect, the necessary degenera-
cies. On the other hand, the early theoretical work2,3

presumed only the minimum symmetry necessary to al-
low a nodal loop: time reversal symmetry and a center
of inversion. This limiting case of “minimal symmetry”
has prompted us to look for an example and understand
its behavior.

When the little group at wavevector ~k contains only

the identity, the Hamiltonian H(~k) has matrix elements
between states with neighboring eigenvalues and anti-
crossings occur as some parameter of H is varied. von
Neumann and Wigner first investigated the conditions
under which degeneracies nevertheless occur, so-called
accidental degeneracies,4 where matrix elements vanish
for no physical reason. Herring generalized their argu-
ments to accidental degeneracies in three dimensional
(3D) crystals.2,3 with some extension by Blount.5 Her-
ring pointed out, for example, that a mirror plane pro-
vides a natural platform for a ring of degeneracies. If a
band with even mirror symmetry is higher in energy than

a band of odd symmetry at ~k1 but lower at ~k2 (both on
the mirror plane), then due to the continuity of eigenval-
ues and differing symmetry, on any path connecting them
there must be a point of degeneracy. The locus of such
degeneracies maps out either a loop encircling one of the
points, or an extended line from zone to zone separat-
ing the two points (which, considering periodicity, also
becomes a closed loop topologically).

The topologically singular nature of such nodal loops
was established by Berry.6 Allen demonstrated7 how,

with minimal symmetry available, these loops of degen-
eracies are destroyed by spin-orbit coupling (SOC). Spe-
cial symmetries can enable nodal loops in the presence of
SOC, for example a screw axis in the example of Fang et
al.8 Burkov et al. made the modern rediscovery of nodal
loops and illustrated the type of Weyl-point connected
electron and hole Fermi surface that should be expected
when the band energies around the loop cross the Fermi
energy.9 Such nodal loops should be common, and in-
deed have been found even in high symmetry elemental
metals.10 Nodal loop semimetals based on crystal sym-
metries, especially mirror symmetries, have appeared in
several models8,9,11–14 and crystal structures.15–28

Before the discussion of Burkov et al.9, a nodal loop of
a pair of coinciding Fermi rings – a nodal ring coincid-
ing with the Fermi energy EF – had been discovered in
calculations of a ferromagnetic compensated semimetal
SrVO3 quantum confined within insulating SrTiO3.15

Mirror symmetry was a central feature in providing com-
pensation and the degenerate nodal loop coinciding with
EF . What is unlikely but not statistically improbable is:
(1) having the nodal loop cut by EF while (2) the remain-
der of the Brillouin zone is gapped. Such loops will have
real impact, and possible applications, when they are the
sole bands around EF , because they generate topologi-
cal character with corresponding boundary Fermi arcs or
points at zero energy.

Among his several results relating crystal symmetries
to accidental degeneracies without consideration of SOC,
Herring2,3 found that inversion symmetry P alone is suf-
ficient to allow nodal loops of degeneracies (fourfold: two
orbitals times two spins), a result extended recently.8,9,12

Simply stated, P symmetry leads to a real Bloch Hamil-

tonian H(~k) if the center of inversion is taken as the ori-
gin. The minimal (for each spin) 2×2 Hamiltonian then

has the form H(~k) = fkτx + gkτz (neglecting spin degen-
eracy for the moment) with real functions fk, gk; ~τ repre-
sents the Pauli matrices in orbital space. Degeneracy of
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FIG. 1: Crystal structure of CaAs3, viewed in the b-c plane.
Arsenic atoms (yellow) form two-dimensional chains similar
to black phosphorus. The center of inversion lies midway
between neighboring Ca ions (shown in red).

the eigenvalues εk = ±(f2k + g2k)1/2 requires fk = 0 = gk,

two conditions on the 3D vector ~k, giving implicitly (say)
ky = K(kx, kz) for some functionK. This condition either
has no solution, or else corresponds to a loop L of degen-
eracies. Allen has given a constructive prescription7 for
following the nodal loop once a degeneracy is located.

Any such loop will not lie at a single energy,2,7,9 and
as mentioned only acquires impact when the disper-
sion around the loop crosses EF , with a gap elsewhere.
This intersection results in a pair (or an even number)
of points where, in the absence of spin-orbit coupling,
the valence and conduction band Fermi surfaces touch.
The dispersion at the Fermi contact points will, barring
accidents of zero probability, be massless in all three
directions3 – Weyl points. Thus at this level (before
SOC) the nodal loop semimetal is a special subclass of
3D Weyl semimetal.

Topics that have not been addressed are: how little
symmetry is necessary for topological character to be re-
tained, what are the consequences, and can an example
with minimum symmetry be found? The line of reason-
ing above applied to the case of no inversion center (i.e.
no crystal symmetry at all) dictates that all of the co-

efficients of σx, σy, σz in H(~k) vanish. Accidental point
degeneracies are thus possible by tuning, while a line of
degeneracies occurs with zero probability.

Discovery and study of topological nodal line semimet-
als protected by crystal symmetry is developing
rapidly.10,17,22,23,25 The class TPn (T=Nb, Ta; Pn=P,
As) lacks an inversion center but contains several crys-
talline symmetries facilitating nodal loops.18–25 The cu-
bic antiperovskite Cu3PdN contains nodal loops in a
background of metallic bands,12,17 the BaTaSe4 family
has nodal loops in its band structure enabled by sym-
metry, and as mentioned cubic elemental metals contain
loops within their metallic bands.10 Here we show that
triclinic CaAs3 is an example of a minimal symmetry
nodal loop semimetal with a single loop of degenera-
cies, providing the “hydrogen atom” of the class of nodal
semimetals..

CaAs3 and three isovalent tri-arsenides (Ca→Sr, Ba,
Eu) were synthesized more than thirty years ago, with
their structure, transport, and optical properties studied
by Bauhofer and collaborators.29,30 CaAs3 is the sole tri-
clinic member of this family, with space group P 1̄ (#2)
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FIG. 2: Band structure of CaAs3 along a few special direction,
from a GGA+mBJ+SOC calculation, and (right panel) the

density of states.The region of interest lies near the Y=~b∗/2
zone boundary (ISIM) point. Band inversion at Y can be eas-
ily imagined by ignoring the mixing that causes anticrossing
along the X −Y direction. Even without SOC, a gap of ∼ 10
meV separates occupied and unoccupied states along the Y -Γ
direction (see inset).

containing only an inversion center, lying midway be-
tween Ca sites.29 Heavily twinned samples of CaAs3 has
been reported as insulating in transport measurements29

but curiously display30 in far infrared reflectivity a Drude
weight corresponding to 1017-1018 carriers per cm3.

The sole symmetry condition in P 1̄ symmetry on the
energy bands is ε−k = εk. This simplicity indicates
that “symmetry lines” are simply convenient lines with
a trivial little group. P 1̄ symmetry does however pro-
vide eight inversion symmetry invariant momenta (ISIM)

ma∗

2 + n b
∗

2 + p c
∗

2 ,m, n, p = 0, 1, in terms of the primi-
tive reciprocal lattice vectors a∗, b∗, c∗. At these ISIMs,
which are the analog of (and equivalent to) the time re-
versal invariant momenta (TRIMs) important in topo-
logical insulator theory,31 eigenstates have even or odd
parity. Isolated nodal loops either (a) must be centered
at an ISIM, or (b) they occur in inversion related pairs.
Due to the low symmetry, finding unusual characteristics
(viz. the occurrence of and center of a nodal loop) neces-
sitates meticulously searching in band inversion regions.

The linearized augmented plane wave method as im-
plemented in WIEN2k32 was applied with the general-
ized gradient approximation (GGA) exchange-correlation
potential.33 RmKmax=7 is a sufficient cutoff for the basis
function expansion in this sp electron material. Studies
have shown that GGA may underestimate relative po-
sitioning of valence and conduction bands in semicon-
ductors and semimetals, and that the modified Becke-
Johnson (mBJ) potential provides a reasonably accurate
correction.34 Thus we rely on the GGA+mBJ combina-
tion throughout. The impact of the As SOC is assessed.

The CaAs3 band structure and density of states (DOS)
in directions along reciprocal lattice vectors and in the
energy range from -2 eV to 2 eV, shown in Fig. 2, sug-
gests small-gap insulating character. Valence and con-
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duction bands are separated in energy except for an evi-

dent band inversion at the Y ≡ ~b∗/2 zone boundary ISIM
point. Note that with non-ISIM points having a trivial
little group, bands do not cross except at accidental de-
generacies, and these will coincide with any given line
with zero probability.7 The combination of P symmetry
and periodicity is enough to ensure that band energies at
~b∗/2± (0, δky, 0) are equal, thus (relative) band extrema
occur at the ISIMs, and can be observed at X,Y, Z, and
Γ in Fig. 2.

FIG. 3: Left panel: Brillouin zone of CaAs3, showing the
nodal loop centered at Y on the top (and bottom) face of this
view of the zone. Right panels: two perspective views of the
nodal line enclosed within the Fermi surfaces, with electron
and hole surfaces denoted by different colors. The notations
a∗, b∗, c∗ of the reciprocal lattice vectors denote direction only.

Searching the band inversion region, a loop L of acci-
dental degeneracies centered at Y was mapped out, i.e.
there is no gap. Its position in the BZ is shown in Fig. 3
together with two perspective views of the Fermi surfaces
(FSs). The loop, resembling a nearly planar lariat, is cut
by EF at not two but four points, each point being a
touching point for a hole and electron FS (guaranteed
by the nodal degeneracies). At this level (no SOC) the
spectrum is that of a semimetal with FSs touching at
four Weyl points. The loop energy lies in the -20 meV to
+20 meV range, making it a very flat nodal loop in the
energy domain as well as in momentum space.

The surface Fermi arcs of a few 3D Weyl semimet-
als are now well studied.1 The analogous states in NLSs
were discussed originally by Burkov et al.9 Projected
onto a surface, L will enclose an area (which we call
a “patch”) within which topologically-required surface
states (“drumhead states”) reside. For CaAs3, L pro-
jected along a∗ leaves a roughly circular patch, and along
c∗ roughly elliptical, consistent with what can be sur-
mised from Fig. 3. The b∗ axis however lies nearly within
the plane of the loop, projecting to a very slender patch.

A plot along a ~k-line crossing the patch will reveal a sur-
face band starting at the edge of this patch and ending
when the k-line leaves the patch. Considering the con-

stant energy contours (potential Fermi lines) in the patch,
they may be closed lines or isolated arcs that terminate
at the boundary of the patch.

Surface band plots along special directions Ȳ − Γ̄− X̄
are shown for the (001) surface in Fig. 4. As mentioned,
the Fermi energy cuts the nodal loop, hence it intersects
the surface patch band resulting in one or more Fermi
lines on each surface. The surface band disperses along
these lines shown by 70 meV. We have confirmed other
studies28,36 that indicate that surface bands obtained
from Wannierization followed by truncation to obtain
a surface can be sensitive to numerical procedures and
the chosen surface termination, so these bands are not a
definitive prediction of the physical surface states. More-
over, non-topological surface bands such as from dangling
bonds may appear as well.

Effect of spin-orbit coupling. Allen demonstrated in
generality the effect of SOC on the nodal loop, using a
two band model in the low energy regime.7 Without any
symmetry operation to cause the SOC matrix element
to vanish, which is the case in CaAs3, the degeneracy is
opened to a k-dependent gap ξk along the entire loop,
which retains an inactive Kramers degeneracy. For in-
tegration around a circuit surrounding the loop L, the
topological phase ±π is replaced by a non-topological
Berry phase that is dependent on the radius of the cir-
cuit. A magnetic field coupled to spins splits the Kramers
degeneracies everywhere, giving four distinct bands near
L. Allen’s paper should be consulted for specific depen-
dencies on the materials parameters.

The SOC splitting of the atomic As 4p level is 270
meV. Since the bands that are inverted at Y are primar-
ily As 4p character, the SOC-driven band shifts will be
some appreciable fraction of this value. Given the 40
meV span in energy of the nodal loop, large enough SOC
can open a gap. The bulk band projection, visible in
Fig. 4, is altered little by SOC. Within the accuracy of
the Wannier interpolation and surface projection, the re-
sult is characteristic of separated valence and conduction
bands that however leave little or no gap.

Fig. 4 reveals that the surface spectrum evolves con-
siderably under SOC. Most evidently, the dispersion of
the valence (occupied) surface band has decreased from
70 meV to only 10 meV. If SOC coupling is large enough
compared to the dispersion around L, the system will
be gapped by SOC, and CaAs3 seems on the border-
line of this situation. If a gap opens, it may provide
a distinct topological character, signaled by the usual
ν0(ν1ν2ν3) indices. We calculate that CaAs3, with SOC
taken into account, is a topological phase with indices
ν0(ν1ν2ν3)=1(010) using the criteria of Fu and Kane.

The spectrum in the right hand panel of Fig. 4 in-
dicates the surface bands that will be topological insu-
lator boundary states if SOC is large enough to give a
gap. Otherwise they are topological surface states of a
semimetal arising from indirect overlap, that is, a topo-
logical semimetal neither Weyl nor nodal loop. Our re-
sults in Fig. 4 indicate that CaAs3 is extremely close to
the topological semimetal - topological insulator transi-
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tion.

FIG. 4: Edge states (peaks in the spectral density) of CaAs3
calculated using the MLWF tight binding representation trun-
cated at the (001) surface. The panels compare spectra before
(left) and after (right) inclusion of SOC. SOC hardly affects
the projected bulk bands while altering the surface (bright
color) bands strongly. The notation “X(20)” for example, in-
dicates the end point is 20% of the distance toward X.

Topological nodal loop from an effective Hamiltonian.
The band structure near EF of CaAs3, with the high-
est valence band inverted across the lowest conduction
band at Y, was fit to a tight-binding model. Away from
Y CaAs3 is gapped, making this compound ideal for ob-
serving a topological nodal line. For simplicity one can
imagine the crystal deformed by an affine transforma-
tion to have orthogonal axes with a=b=c=1. We con-
sider the following two orbital, non-inversion symmetric
Hamiltonian which reproduces the essential features of
the inverted band region of CaAs3. It includes nearest
neighbor hopping between like orbitals {tα, α = 1 − 3},
and between unlike orbitals {tα, α = 4 − 6} having dif-
fering parity:

H̃(~k) = g~kτz + f~kτx + iξσzτx

f(ka, kb, kc) = t4 sin ka + t5 sin kb + t6 sin kc

g(ka, kb, kc) = m− t1 cos ka − t2 cos kb − t3 cos kc,

where {τj},{σj} are the 2×2 matrices in orbital and
spin space respectively, and ξ is the SOC parameter.
This Hamiltonian describes two particle-hole symmetric
bands ±|gk| with centers separated by 2|m|, coupled by
fk, and including intra-orbital SOC, with eigenenergies

εk,± = ±
√
g2~k

+ f2~k
+ ξ2. Evidently SOC (ξ 6= 0) splits

the degeneracy everywhere.7,8 To mimic CaAs3 we con-
sider the site energy m and hopping parameters (in eV)
m = 1.64, t1 = 0.37, t2 = −0.95, t3 = 0.37, t4 = −0.18,
t5 = 0.12, t6 = 0.38. Without SOC (ξ = 0), degeneracy
fk = 0 = gk is realized around a nodal loop flat in energy
(at zero energy). The loop, centered at Y but otherwise
depending on parameters, and shown in the left panel
of Fig. 5, resembles the nodal loop of CaAs3 pictured in
Fig. 3.

The evolution of the loop topology can be followed by
varying the band separation 2m. Two types of lines of ac-

FIG. 5: Nodal lines of accidental degeneracies for the model
Hamiltonian’ the dots indicate where a loop passes into a
neighboring Brillouin zone. For m=1.44 on the left, a single

loop is centered on the ISIM point
~b∗

2
. The m=0 case is shown

on the right, with two pairs of inversion symmetry related
lines threading from zone to zone.

cidental degeneracies may emerge from the Hamiltonian:
a closed nodal loop as in CaAs3, or a line extending from
zone to zone, which by zone periodicity become closed
lines on the 3D-torus, the difference from the former be-
ing that they must occur in pairs. In Fig. 5, the two
types of loops are plotted in the first Brillouin zone. On
the left, where m=1.44, a single loop is centered at Y .

Varying m tunes the system through an evolution from
an odd number (one) to an even number (four) of nodal
loops. The right panel in Fig. 5 (m=0) has two pairs of
inversion symmetric nodal loops threading through ex-
tended Brillouin zones. Because the loop is flat in en-
ergy (at zero), adding SOC immediately opens a global
gap of 2ξ. We find the resulting state to have indices
0(000), i.e. a trivial insulator, A different, lower symme-
try model would be necessary to produce a topological
insulating state such as occurs in 1(010) CaAs3.

In this work we have studied the electronic and topo-
logical properties of triclinic CaAs3, which is distin-
guished by possessing the lowest possible symmetry for a
nodal loop semimetal. In the absence of spin-orbit cou-
pling, CaAs3 has a single nodal loop (others have loops
occurring in pairs) that is cut by the Fermi level four
times. Spin-orbit coupling leads not only to lifting of
the nodal loop degeneracies and separation of valence
and conduction bands complexes. An effective Hamilto-
nian demonstrates that a variety of types and numbers
of nodal loops will emerge as parameters are varied. This
model provides guidance for engineering topological tran-
sitions in CaAs3 and related materials by applying ex-
ternal tensile or compressive strains, or by alloying with
isovalent atoms on either site.

We have benefited from comments on the manuscript
from A. Essin, from discussions of topological aspects
with K. Koepernik and J. Kǔnes, and from T. Siegrist
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13 T. T. Heikkilä and G. E. Volovik, Nexus and Dirac lines
in topological materials, New J. Phys. 17, 093019 (2015).

14 K. Mullen, B. Uchoa, and D. T. Glatzhofer, Line of Dirac
Nodes in Hyperhoneycomb Lattices, Phys. Rev. Lett. 115,
026403 (2015).

15 V. Pardo and W. E. Pickett, Electron Confinement, Or-
bital Ordering, and Orbital Moments in d0 − d1 Oxide
Heterostructures, Phys. Rev. B 81, 245117 (2010)

16 C. Fang, M. J. Gilbert, X. Dai, and B. A. Bernivig, Multi-
Weyl topological semimetals stabilized by point group
symmetry, Phys. Rev. Lett. 108, 266802 (2012).

17 R. Yu, H. Weng, Z. Fang, X. Dai, and X. Hu, Topological
Node-Line Semimetal and Dirac Semimetal State in An-
tiperovskite Cu3PdN, Phys. Rev. Lett. 115, 036807 (2015).

18 S.-M. Huang et al., A Weyl fermion semimetal with sur-
face Fermi arcs in the transition metal monopnictide TaAs
class, Nat. Commun. 6, 1 (2015).

19 D.-F. Xu, Y.-P. Du, Z. Wang, Y.-P. Li, X.-H. Niu, Q. Yao,
P. Dudin, Z.-A. Xu, X.-G. Wan, and D.-L. Feng, Chin.
Phys. Lett. 32, 107101 (2015).

20 B. Q. Lv et al., Observation of Weyl nodes in TaAs, Nature
Physics 11, 724-727 (2015).

21 C. Shekhar et al., Extremely large magnetoresistance and
ultrahigh mobility in the topological Weyl semimetal can-
didate NbP, Nat. Phys. 11, 645 (2015).

22 H. Weng, C. Fang, Z. Fang, B. A. Berniveg, and X. Dai,
Weyl semimetal phase in noncentrosymmetric transition-
metal monophosphides, Phys. Rev. X 5, 011029 (2015).

23 K.-H. Ahn, K.-W. Lee, and W. E. Pickett, Spin-orbit
driven interaction collective electron-hole excitations in a
noncentrosymetric nodal loop Weyl semimetal, Phys. Rev.
B 92, 115149 (2015).

24 Y. Sun, S.-C. Wu, and B. Yan, Topological surface states
and Fermi arcs of the noncentrosymmetric Weyl semimet-
als TaAs, TaP, NbAs, and NbP, arxiv:1508.06649.

25 L. X. Yang, Z. K. Liu, Y. Sun, H. Peng, H. F. Yang, T.
Zhang, B. Zhou, Y. Zhang, Y. F. Guo, M. Rahn, D. Prab-
hakaran, Z. Hussain, S.-K. Mo, C. Felser,B. Yan, and Y. L.
Chen, Weyl semimetal phase in the non-centrosymmetric
compound TaAs, Nat. Phys. 11, 728 (2015).

26 M. Neupane et al., Observation of topological nodal
fermion semimetal phase in ZrSiS, Phys. Rev. B 93, 195106
(2016).

27 H. Huang, J. Liu, D. Vanderbilt, and W. Duan, Topo-
logical nodal-line semimetals in alkaline-earth stannides,
germanides, and silicides, Phys. Rev. B 93, 201114 (2016).

28 J. Zhao, R. Yu, H. Weng, and Z. Fang, Topologi-
cal node-line semimetal in compressed balck phosphorus,
arXiv:1511.05704.

29 W. Bauhofer, M. Wittmann and H. G. v. Schnering, Struc-
ture, electrical and magnetic properties of CaAs3, SrAs3,
BaAs3, and EuP3, J. Phys. Chem. Solids, 42, 687 (1981).
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