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The magnetic and nematic properties of the iron chalcogenides have recently been the subject of intense

interest. Motivated by the proposed antiferroquadrupolar and Ising-nematic orders for the bulk FeSe, we study

the phase diagram of an S = 1 generalized bilinear-biquadratic model with multi-neighbor interactions. We find

a large parameter regime for a (π,0) antiferroquadrupolar phase, showing how quantum fluctuations stabilize

it by lifting an infinite degeneracy of certain semiclassical states. Evidence for this C4-symmetry-breaking

quadrupolar phase is also provided by an unbiased density matrix renormalization group analysis. We discuss

the implications of our results for FeSe and related iron-based superconductors.

Introduction— Much of the current effort in the study of

the iron-based superconductors (FeSCs) is devoted to under-

standing the magnetism in their normal state [1, 2]. While

the iron pnictides were the focus of the early effort in the

FeSC field, iron chalcogenides have occupied the center stage

more recently. Among them, FeSe takes a special place. In

the single-layer limit, FeSe has the highest superconducting

transition temperature among the FeSCs [3–6]. In bulk form,

this compound is a canonical superconducting member with a

very simple structure [7, 8]. It displays a typical tetragonal-to-

orthorhombic structural transition, with Ts ≈ 90 K, but, sur-

prisingly, no Néel transition [9–16]. This is puzzling, because

it differs from the standard case of the iron pnictides where

the structural phase transition is accompanied by a (π, 0) anti-

ferromagnetic (AFM) order [17]. Several theoretical propos-

als attribute this unusual behavior to the frustrated magnetism

among the local moments [18–20]. Two of the present authors

considered a generalized bilinear-biquadratic (GBQ) model

on a square lattice and proposed that an antiferroquadrupo-

lar (AFQ) state with wave vector (π, 0) describes the bulk

FeSe [18]. This theoretical picture predicted low-energy spin

excitations near (π, 0), which has since been experimentally

observed [21, 22]. It also predicted a linear-in-energy spec-

tral weight for such low-energy spin excitations and, over

a wider energy range, spin excitations near both (π, 0) and

(π, π), all of which have also been verified in recent experi-

ments [23, 24]. More broadly, the neutron scattering measure-

ments show that the spin spectral weight is even larger than

that of the AFM state in the iron pnictides [23, 24], which

provides further support for describing the magnetic proper-

ties of FeSe in terms of frustrated magnetism.

The proposed two-sublattice C4-symmetry-breaking AFQ

state is a novel state of matter, and systematic theoretical

studies are clearly called for. Quadrupolar order per se in

frustrated spin models has been studied before [25–35], rep-

resenting an intriguing spin state that involves the ordering

of spin quadrupolar moments without exhibiting a magnetic

dipolar order. However, two-sublattice AFQ order such as

the proposed (π, 0) phase has not been realized before as a

zero-temperature phase in such quantum-spin models, and the

nature of the associated rotational symmetry breaking has not

been addressed. In particular, it would be important to estab-

lish if the AFQ order is a true ground state of the GBQ model

when the quantum fluctuations are fully accounted for.

In this Letter, we demonstrate that the (π, 0) AFQ state is

the ground state of the spin S = 1 GBQ model on a square

lattice over an extended parameter range. We have done so

by two complementary means. We first show that the AFQ

order has the lowest energy for a range of parameters based

on a site-factorized wavefunction [30, 31, 33, 36, 37]. From

a flavor-wave analysis, we show that quantum fluctuations lift

an infinite degeneracy in the ground state energy and stabi-

lize the AFQ ground state with order at either (π, 0) or (0, π).
Such order-from-disorder physics is analogous to what hap-

pens for the case of pure antiferromagnetic order [38, 39], al-

though it has never before been realized for any two-sublattice

AFQ order. We then show that the AFQ order is the true

ground state even when the quantum fluctuations are treated

fully and in an unbiased way, using the density matrix renor-

malization group (DMRG) method [40, 41]. Finally, from

a symmetry-based treatment, we establish that the AFQ or-

der parameter does not couple to bilinear fermions, thereby

demonstrating the consistency of the (π, 0) AFQ order with

the single-electron spectrum observed in FeSe. We stress

that both the problem we address, and the analysis we carry

through, are new to the present work. We note in passing

that the stabilization of the C4-symmetry-breaking AFQ by

the quantum fluctuation effects not only provides an intrigu-

ing mechanism for the nematic order in the normal state of

the iron chalcogenide FeSe, but also suggests the possible re-

alization of such a “hidden order” phase in cold atom systems

tuned away from the SU(N>2) symmetric point, in which

bilinear-biquadratic couplings can be realized [42].

Generalized Bilinear-Biquadratic Model— We consider

the GBQ model on a two-dimensional square lattice,

H =
∑

i,δn

[

JnSi · Sj +Kn (Si · Sj)
2
]

, (1)
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FIG. 1. (Color online) The phase diagram derived from the site-

factorized wavefunction studies, as a function of K2 and K3. We

have fixed J1 = J2 = 1/4, and K1 = −1. Collinear AFM repre-

sents an antiferromagnet with wave vectors (π, 0)/(0, π), and Néel

AFM with (π, π). The (π, 0) AFQ corresponds to the antiferro-

quadrupolar phase, which has an infinite degeneracy that is to be

lifted by quantum fluctuations. FQ corresponds to the ferroquadrupo-

lar state. The red open circle, green open diamond, and blue open

square are three parameter points for which the DMRG results will

be presented.

where j = i + δn, and δn connects site i and its nth near-

est neighbor sites with n = 1, 2, 3. The couplings Jn
and Kn are the bilinear and biquadratic couplings between

the nth nearest neighbor spins. The importance of the bi-

quadratic couplings Kn (along with the bilinear couplings

Jn) has been suggested both from an analysis of the inelas-

tic neutron-scattering spectra in the iron pnictides [43] as well

as from ab initio studies [44]. The large magnitude inferred

for the biquadratic coupling is compatible with the expecta-

tion for multi-orbital models in the bad-metal regime [45].

We expect that Kn will contain not only a nearest-neighbor

term (n = 1) but also further-neighbor ones (n > 1), in close

analogy to the well-established case of Jn [2]. A quadrupo-

lar operator at site i, Qi, has five components: Qx2−y2

i =

(Sx
i )

2 − (Sy
i )

2, Q3z2−r2

i = [2(Sz
i )

2 − (Sx
i )

2 − (Sy
i )

2]/
√
3,

Qxy = Sx
i S

y
i + Sy

i S
x
i , Qyz = Sy

i S
z
i + Sz

i S
y
i , and Qzx =

Sz
i S

x
i + Sx

i S
z
i . The biquadratic term can be re-expressed as

(Si · Sj)
2 = (Qi ·Qj)/2− (Si · Sj)/2 + (S2

iS
2
j)/3.

It is convenient to choose the time-reversal invariant basis

of the SU(3) fundamental representation [28, 32],

|x〉 = i|1〉 − i|1̄〉√
2

, |y〉 = |1〉+ |1̄〉√
2

, |z〉 = −i|0〉, (2)

where we abbreviate |Sz = ±1〉 ≡ | ± 1〉 (|Sz = 0〉 ≡ |0〉)
and |1̄〉 ≡ |−1〉. We can introduce a site-factorized wavefunc-

tion at each site to characterize any ordered state with short-

ranged correlations as

|di〉 = dxi |x〉+ dyi |y〉+ dzi |z〉, (3)

where dx,y,zi are complex numbers and can be re-expressed

in the vector form called director, di = (dxi , dyi , dzi ), with

the basis {|x〉, |y〉, |z〉}. We can then re-express the model

Hamiltonian as [46]

Hsf =
∑

i,δn

[

Jn
∣

∣di · d̄j

∣

∣

2
+ (Kn − Jn) |di · dj |2 +Kn

]

,(4)

(a) (b)

FIG. 2. (Color online) (a) Illustration of the (π, 0) AFQ found within

the site-factorized wave function studies. The red bars are the direc-

tors d labeling the quadrupolar direction. Generically, there are 4

sublattices per unit cell, and the two independent directors are spec-

ified by one independent angle θ. (b) Illustration of the square net-

work consisting of the lattice for performing flavor-wave theory cal-

culations. The unit cells, which contains 4 sublattices, are connected

by the vectors e1 ≡ x̂ and e2 ≡ ŷ, where we set the lattice constant

a ≡ 1.

where the subscript “sf“ refers to the site-factorized Hamilto-

nian. In the following, we will drop the irrelevant constant

terms in Eq. (4). Within the SU(3) basis, the ferroquadrupolar

phase (FQ) has all directors aligned along a particular direc-

tion. In contrast, in AFQ the directors at different sublattices

are orthogonal to each other.

AFQ order from site-factorized wavefunction— We study

the phase diagram using a variational method based on the

site-factorized wave-functions on a L × L square lattice with

L up to 6 and periodic boundary condition. We first illustrate

our result by considering fixed J1 = J2 = 1/4, J3 = 0 and

K1 = −1, and variable K2 and K3. (See below about the

robustness of our result over an extended parameter range. As

shown in Fig. 1, the ground state phase diagram contains four

phases: a collinear AFM (CAFM) ordered at wave vectors

(π, 0)/(0, π), a Néel AFM ordered at (π, π), a FQ ordered

at (0, 0), and an AFQ ordered at (π, 0)/(0, π). Within our

approach, we did not find evidence for any three-sublattice

AFQ order. [31–33]

Figure 2(a) illustrates the directors in the (π, 0) AFQ, in

which there are 4 sublattices. The d directors connected by

the second-neighbor bonds are mutually orthogonal to each

other, while the nearest-neighbor d-s are subject to an angle

θ. In the 4 sublattices, there are only 2 independent d-s. We

choose those sitting on sublattices 1 and 2 to be independent,

which then specifies the d-s on sites 3 and 4 straightforwardly

due to orthogonality. This leads to the following parametriza-

tion for the d-s:

d1 =
(

1 0 0
)

, d2 =
(

cos θ sin θ 0
)

,
d3 =

(

− sin θ cos θ 0
)

, d4 =
(

0 1 0
)

.
(5)

Despite the finite angle between d1 and d2, the energy of

(π, 0) AFQ is independent of the angle θ within this semi-

classical approach, which can be seen by plugging d directors

into Eq. (4). Thus, the semiclassical (π, 0) AFQ is infinitely

degenerate at the level of site-factorized wavefunction stud-

ies, which do not include the quantum fluctuations. [Quantum

fluctuations will lift the degeneracy (see below).] The bound-
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aries between each phase can be determined analytically [46],

which are consistent with the numerical results.

Quantum fluctuations stabilizing (π, 0) AFQ— The (π, 0)
AFQ at the level of the site-factorized wave function is illus-

trated in Fig. 2(a), in which the angle θ varies between 0 and

π. The states with angles θ = 0 or π/2 correspond to the AFQ

state of interest, at wave vector (0, π) or (π, 0), respectively.

Below we study the effect of the quantum fluctuations in this

AFQ using the flavor-wave theory formulation.

For the flavor wave calculation, we associate 3 Schwinger-

bosons at each site i, biα=x,y,z, to the states of Eq. (2),

where b†iα|vac〉 = |α〉 with |vac〉 being the vacuum state of

the Schwinger bosons. The bosons satisfy a local constraint
∑

α b†iαbiα = 1. The Hamiltonian, Eq. (1), can be rewritten

as

H =
∑

i,δn,α,β

[

Jnb
†
iαbjαb

†
jβbiβ + (Kn − Jn) b

†
iαb

†
jαbjβbiβ

]

.(6)

Following the usual procedure of the spin-wave theory calcu-

lations, we introduce different local rotations around z-axis

for each sublattice i = 1, 2, 3, 4 as aiα =
∑

β

(

Rθi
z

)

αβ
biβ ,

where Rθi
z represents the SO(3) matrix for a rotation around

the z-axis by angles θi that are determined according to

Eq. (5) and Fig. 2(a). At each site, we assume that only aix
condenses, and we replace a†ix and aix by (M − a†iyaiy −
a†izaiz)

1/2, where M = 1 in the present case. A 1/M expan-

sion up to the quadratic order in the bosons ay and az followed

by an appropriate Holstein-Primakoff transformation allows

us to extract the ground state energy. From now on we replace

the labeling aiα = aα(r, a), where r runs over the Bravais lat-

tice of unit cells of the square network and a = 1, 2, 3, 4 runs

over the sub lattices, as illustrated in Fig. 2(b). The different

unit cells are connected by e1 ≡ x̂ and e2 ≡ ŷ.

For clarity, we introduce DT
α (k) ≡

{aα(k, 1), aα(k, 2), aα(k, 3), aα(k, 4)} and AT
α(k) ≡

{

DT
α (k), D

†
α(−k)

}

, where α = y, z. We arrange the

Hamiltonian [47] to be H = Hc + HB . The first term,

Hc = 8
∑

k

[

J1 + K1 + J2
(

1− sin2(2θ)/8
)

− K2 +

J3

(

1−
∑

µ=1,2 cos(k · eµ) + sin2(2θ)/8
)

+ 3K3

]

, repre-

sents the semiclassical ground-state energy. The second term

HB is expressed as HB =
∑

k,η=y,z A
†
ηHηAη , with

Hη =

(

αη γη
γ†
η αη

)

, (7)

where αη and γη are 4 × 4 Hermitian matrices and are func-

tions of momenta k, couplings Jn and Kn, and the angle

θ. HB contains the zero-point energy of the boson fields,

which plays the role of quantum correction to the semiclas-

sical ground-state energy. We leave the full expressions of the

matrices to the Supplemental Material [46].

Figure 3 shows the ground state energy of the (π, 0) AFQ

vs θ within the flavor-wave theory at {K2,K3} = {1,−1}.

The two degenerate quadrupolar ground states at θ = 0, π/2

FIG. 3. (Color online) Energy per site of the (π, 0) AFQ vs θ ob-

tained in the flavor-wave theory calculations. The system we use in

the numerics consists of 100×100 unit cells, with 4 sites per unit

cell. The parameters for this calculation are (K2,K3) = (1,−1).

FIG. 4. (Color online) The spin dipolar ((a)-(c)) and

quadrupolar ((d)-(f)) structure factors, m2

s(q) and m2

Q(q), with

(J1, J2, J3,K1) = (1/4, 1/4, 0,−1) on Ly = 8 lattice for Néel or-

der [(a)/(d)] with (K2,K3) = (1, 1) ), FQ [(b)/(e)] with (K2, K3) =
(−1,−1), and (π, 0) AFQ [(c)/(f)] with (K2,K3) = (1,−1). The

color represents the peak height of the corresponding structure factor.

correspond to the AFQ with the ordering wavevector (π, 0)
or (0, π). We conclude that the quantum fluctuations lift the

infinite degeneracy and stabilize the (π, 0) AFQ.

Density Matrix Renormalization Group Analysis— To fur-

ther demonstrate the stability of the (π, 0) AFQ phase and to

analyze the GBQ model in an unbiased way, we turn next to

the study of the ground states using the SU(2) DMRG cal-

culations [40, 48–51]. To search for the (π, 0) AFQ order,

we specifically consider the parameter point, (K2,K3) =
(1,−1), where the (π, 0) AFQ is realized in Fig. 1 (recall

J1 = J2 = 1/4 and K1 = −1). For comparison, we

also consider two parameter points in the nearby regimes,

(K2,K3) = (−1,−1) and (1, 1), corresponding to the FQ

and Néel AFM, respectively, in Fig. 1 (the other parameters

are unchanged). We perform DMRG simulations on cylindri-

cal geometries with Ly = 6, 8 lattice spacings keeping up to

6000 SU(2) states and Ly = 10 keeping up to 4000 SU(2)

states. We rescale the parameters with respect to J1. The

largest truncation errors are around 10−5. Especially on the

Ly = 10 cylinder, we have checked the results corresponding

to 2000 and 4000 SU(2) states, and found the differences to

be small (around 10−3) for m2
S and m2

Q.

We choose Ly = L to calculate the spin (〈Si · Sj〉) and
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quadrupolar (〈Qi ·Qj〉) correlation functions in the mid-

dle of L × 2L cylinder systems to obtain the correspond-

ing structure factors [49, 51], m2
S(q) ≡ (1/L4)

∑

ij〈Si ·
Sj〉eiq·(ri−rj) andm2

Q(q) ≡ (1/L4)
∑

ij〈Qi·Qj〉eiq·(ri−rj),

in Figs. 4(a)-(f). We obtain the results at parameter points

(K2,K3) = (1, 1), (−1,−1), and (1,−1) shown, respec-

tively, in Figs. 4[(a)/(d)], [(b)/(e)], and [(c)/(f)]. Fig. 4[(a)/(d)]

show a sharp peak at (±π,±π) in m2
S(q) and a weak FQ

peak at (0, 0) in m2
Q(q) suggesting the Néel AFM. We note

that for spin-1 system the magnetically-ordered states are ex-

pected to show finite FQ order. Fig. 4[(b)/(e)] show no mag-

netic order signature in m2
S(q) and a sharp peak at (0, 0) in

m2
Q(q) suggesting the ground state is FQ. Fig. 4[(c)/(f)] show

no clear signature in m2
S(q) and sharp peaks at (±π, 0) in

m2
Q(q) suggesting the realization of the (π, 0) AFQ, which

is confirmed under finite-size scaling analysis. [46] We note

that Fig. 4(f) also shows a peak at q = (0, 0) in (π, 0) AFQ.

This is theoretically expected: For a two-sublattice AFQ order

at (π, 0), one diagonal component of the quadrupolar oper-

ator Qx2−y2

takes staggered values at sublattices A and B,

〈Qx2−y2

i 〉 = 〈(Sx
i )

2〉 − 〈(Sy
i )

2〉 = (−1)i, which implies

〈(Sx
i )

2〉 = δiA and 〈(Sy
i )

2〉 = δiB ; correspondingly, the

other diagonal component takes uniform expectation values at

each site, 〈Q3z2−r2

i 〉 = −1/
√
3, and thus shows the FQ peak.

Discussions— We close by remarking on several points.

First, both our analytical and numerical calculations indicate

that the (π, 0) AFQ order is not accompanied by any AFM

order.

Second, the (π, 0) AFQ ground state is stable over a very

wide range in the parameter space. To illustrate this point,

we consider the case of −K1/J2 = 0.8, which is expected

to be realistic to FeSe since it is already close to that ex-

tracted from fitting the spin spectra of related iron-based sys-

tems [43]. Continuing to set J1 = J2 = 1/4, and taking

K2 = −K3 = −K1 = 1/5, we show that the (π, 0) AFQ

ground state persists (see the Supplemental Material; particu-

larly, Fig. S3) [46].

Third, the (π, 0) AFQ state breaks the C4 symmetry, and

associated with it is an Ising-nematic order. The latter is ex-

pected to be dominated by the following order parameter [18]:

σ2 =
∑

i

[

(Si · Si+x̂)
2 − (Si · Si+ŷ)

2
]

. (8)

While this is clearly the case for the ground state, σ2 will

persist at nonzero temperatures even in the purely two-

dimensional limit. (In the presence of an interlayer coupling,

the AFQ order will also extent to nonzero temperatures.) This

provides the basis to understand the nematic transition at Ts

in FeSe.

Fourth, in a (π, 0) AFQ state, the low-energy spin exci-

tations are expected to be concentrated near the wavevector

(π, 0). The spectral weight at low energies should be linear

in ω [18]: It is proportional to [M(ω)]2/ω, with the spec-

tral weight of the quadrupolar Goldstone mode per se con-

tributing the factor 1/ω, and the spin dipolar matrix element

of the quadrupolar mode M(ω) being ∝ ω. (This argument

is valid for any AFQ order at zero magnetic field and, indeed,

the linear-in-ω dependence also appears in the three-sublattice

(2π/3, 2π/3) AFQ state on the triangular lattice [34].) Such

a linear dependence has been observed (up to about 50 meV)

by the recent neutron-scattering experiments in FeSe[23, 24].

At higher energies, the spin excitations are expected to spread

over a large range of wavevectors, including a sizable spectral

weight near (π,π). This is also consistent with the neutron-

scattering measurements in FeSe [23, 24].

Finally, the quadrupolar operator acts like a spin-2 opera-

tor. Thus, in the absence of spin-orbit coupling, the AFQ or-

der parameter cannot be coupled to the bilinear fermion fields.

(In the Supplemental Material [46], the result is derived from

a rigorous group-symmetry analysis.) This implies that the

AFQ order does not reconstruct the Fermi surface. Instead,

the coupling to the bilinears of the itinerant electrons is only

through the nematic order parameter, which induces a distor-

tion of the Fermi surface. In contrast to what happens above

the ordering temperature, the Fermi surface in the AFQ state

will lose the invariance under a C4-rotation: e.g., the hole

Fermi pockets near Γ will be elongated along one of the axis

directions. All these features are consistent with the observa-

tions of photoemission experiments[15], when twin domains

are taken into account.
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