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We report the momentum-resolved measurement of Bloch bands in an optical Lieb lattice for a
Bose-Einstein condensate (BEC). A BEC in the lattice is transported to a desired quasimomentum
by applying a constant force. The energy dispersion of the lowest band is obtained by integrating
measured group velocities. We also measure the gap from the lowest band to the higher bands with
the same quasimomentum, which can be extracted from the oscillation of the sublattice populations
after preparing a superposition of the band eigenstates. We show that the experimental results agree
with a band calculation based on the Bogoliubov approximation. It is revealed that the second band,
which should be flat in a single-particle description, is shifted and, in particular, distorted around
the Brillouin zone (BZ) edge as the interaction strength increases.

PACS numbers: 67.85.-d, 03.75.Kk

Flat bands possess macroscopic level degeneracy be-
cause of their dispersionless band. Flat bands appear
in various contexts of condensed-matter physics, rang-
ing from the Landau levels of two-dimensional electrons
[1], edge states of graphene [2] to unconventional super-
conductors [3]. Intriguingly, such flatten band structure
shows wide range of many-body phenomena from su-
persolidity [4] to flat-band ferromagnetism [5–7]. In ad-
dition, flat bands with nontrivial topological properties
have attracted much attention for their application in re-
alizing a fractional quantum Hall state without Landau
levels [8–10].

In a special lattice structure such as kagome, saw-
tooth and Lieb lattices, the destructive interference of
the tunneling induces frustration of kinetic energy and
results in a bulk flat band. For bosonic systems, a fas-
cinating question has been considered whether conden-
sation is stable in a flat band. In a kagome lattice, it is
theoretically investigated that an interaction makes the
energy at the K-point which corresponds to the corner
of the hexagonal first BZ lowest in a flat band [11]. Re-
cently, several lattice structures with a flat band have
been realized in optical lattices [12, 13], photonic lat-
tices [14–16] and a polaritonic system [17]. Above all,
ultracold atoms in optical lattices have great advantages
in terms of their simplicity and dynamical controllability
of system parameters such as tunneling amplitude and
on-site interaction in the Hubbard regime [18]. In ultra-
cold atom experiments, a band structure of an optical
lattice can be measured in momentum-resolved manner
by Bragg spectroscopy [19] and a combination of Bloch
oscillation and Stückelberg interferometry [20]. The for-
mer method requires a continuous change of the angle
between the driving laser beams. In the latter method,
only the gap between the 1st band and 2nd band can be
measured.

In this paper, we report the momentum-resolved mea-
surement of the lowest three Bloch bands for an inter-
acting array of BEC trapped in an optical Lieb lattice
(Fig. 1(a)). Three-sublattice structure (A, B, and C) of

the Lieb lattice gives rise to three s-orbitals described as

|q, 1st〉 = 1√
2
(|q,A〉+ sinθq |q,B〉+ cosθq |q,C 〉)

|q, 2nd〉 = cosθq |q,B〉 − sinθq |q,C 〉 (1)

|q, 3rd〉 = 1√
2
(|q,A〉 − sinθq |q,B〉 − cosθq |q,C 〉)

where |q, S〉 (S = A,B,C) is a plane wave on a sublat-
tice S with quasimomentum q, and θq satisfies tanθq =
cos(qxd/2)/cos(qzd/2). The resulting single-particle en-
ergy spectrum has a flat band as the second band and
a Dirac cone at the corner of the Brillouin zone (Fig. 1
(b)). To investigate the dispersion relation, a BEC in the
lattice is transported to various quasimomenta by apply-
ing a constant force [21]. The dispersion of the lowest
band is acquired by integrating group velocity measured
from matter-wave interference patterns (Fig. 1 (c)). For
the higher bands, we measure the gap from the lowest
band (Fig. 1 (d)). High controllability of the optical
lattice enables us to prepare the precise superposition of
band eigenstates [13]. Once such a state is introduced
into the Lieb lattice, the sublattice population starts os-
cillation whose frequency corresponds to the band gap.
This work sheds light on the important role of the inter-
action in significantly modifying the Bloch band includ-
ing a flat band in the Lieb lattice.
We begin with describing our experimental setup. A

nearly pure condensate of ytterbium (174Yb) is optically
trapped using far-off-resonant trap (FORT) laser beams.
An optical Lieb lattice is then adiabatically ramped up
and the BEC is located at quasimomentum q = 0 (Γ
point) of the lowest band. Our optical Lieb lattice po-
tential is given by

V (x, z) = −V
(x)
longcos

2(kLx)− V
(z)
longcos

2(kLz)

− V
(x)
shortcos

2(2kLx)− V
(z)
shortcos

2(2kLz)

− Vdiagcos
2(kL(x− z) + π/2)

(2)

where z indicates the direction of gravity. kL = 2π/λ
is a wavenumber of a long lattice for which we choose
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FIG. 1. (Color online) (a) Schematic of Lieb lattice. In our
system, the atoms are weakly trapped along the y direction,
and distribute like tubes as described in gray in the figure.
(b) Band structure of Lieb lattice in single-particle descrip-
tion. (c) Method for measuring dispersion of the lowest band.
Red circles indicate atomic cloud. After transporting a BEC
to a desired quasimomentum, we measure the group velocity
and integrate the results. (d) Method for measuring a band
gap in momentum-resolved manner. We prepare the super-
position of band eigenstates, transport the atoms to a desired
quasimomentum, and measure an oscillation frequency of the
sublattice population.

λ = 1064 nm. In the following, we specify each lattice
depth as (slong, sshort, sdiag) = (Vlong, Vshort, Vdiag)/ER,
where ER = ~

2kL
2/(2m) is the recoil energy and m is

the atomic mass of 174Yb. In the y direction which is
perpendicular to the Lieb lattice plane, the atoms are
weakly confined in a harmonic trap, resulting in 2D array
of 1D tubes as illustrated in Fig. 1 (a). To move the
atoms in the reciprocal space, we utilize two kinds of
external forces. One is a gravitational force acting in
Γ(qx = 0, qz = 0) to X(qx = kBZ, qz = 0) direction,
which can be applied by turning off the FORT potential,
where kBZ = π/d = kL. The other is a dipole force
due to the potential gradient of a Gaussian beam with
the beam waist of about 50 µm and about 1 GHz red
detuning from the resonance of the 1S0 - 3P1 transition
(λ = 556 nm) acting in Γ to M(qx = kBZ, qz = kBZ)
direction.
In the presence of a constant external force F , which is

weak enough not to induce interband transitions, a given
band eigenstate |q(0), n〉 evolves to |q(t), n〉 according to
q(t) = q(0)+F t/~ after a time t [21]. The group velocity
in |q(t), n〉 is related to the band eigenenergy En(q(t))
as [22]

〈v〉n (q(t)) =
1

~

dEn (q(t))

dq
. (3)

In the following, we reconstruct the dispersion of the
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FIG. 2. (Color online) (a), (b) Absorption images at quasi-
momentum (qx, qz) = (0, 0) and (0.5, 0.5)kBZ respectively,
where kBZ corresponds to the quasimomentum at the BZ
edge. The images are taken after a TOF of 14ms. We restrict
the integration region within the white squares in which the
atoms are mostly detected. (c) Dispersion of the 1st band of
optical Lieb lattice (slong, sshort, sdiag) = (13, 13, 15.5). The
experimental data are denoted as green circles. The inset
shows the first BZ. Dashed black line is single-particle theory.
Dotted blue line is the calculation for half of the maximum
number density. Solid yellow line is for the maximum number
density. The vertical axis shows the energy difference from
the 1st band energy at Γ for each interaction strength. Error
bar means the standard deviation of three independent scans.

lowest band by integrating the group velocities detected
via time-of-filight (TOF) measurements [23, 24]. From a
TOF image, we can observe the velocity distribution of
atomic cloud n(vx, vz), which is once integrated in the
direction perpendicular to the Lieb lattice plane. Using
the velocity distribution, the group velocity is given as
〈v〉 =

∫
dvxdvz vn(vx, vz). When extracting the group

velocity from TOF images, we reduce the influence of the
background noise in the region where the atoms are not
populated by restricting the region of integration into the
squares as in Fig. 2 (a), (b), whose centers correspond to
~(qx(t), qz(t)), ~(qx(t)± 2kL, qz(t)± 2kL), ~(qx(t), qz(t)±
4kL), ~(qx(t) ± 4kL, qz(t)) and the width is ≃ ~kL/3.
Measured group velocity at each quasimomentum is in-
tegrated in a trapezoidal approximation: E(q)/~ =
∫ q

0
dq′ · 〈v〉 (q′) ∼ Σ

q′(i)=q
i=0 dq′(〈v〉 (i+ 1) + 〈v〉 (i))/2.

When the BEC in the lowest band experiences a weak
external force, the whole condensate occupies a single
band at a single wavenumber. We compare the experi-
mental data with Gross-Pitaevskii equation (GPE) in a
tight-binding approximation (See S.1 in Supplementary
Material [25]). Whereas the eigenstates given in Eq.(1)
assume that tunneling occurs only between the near-
est neighbors, there exists tunneling to the next near-
est neighbors or in the diagonal direction in a shallow
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optical lattice potential. We fit the tunneling parame-
ters so that the resulting tight-binding model reproduces
the band calculated by using optical lattice potentials.
Wannier function is also determined by the optical lattice
potential (See [13, 25]). We compare the experimental
results with a band calculation with such realistic Hub-
bard parameters.

Figure 2 (c) shows the dispersion of the lowest band for
the lattice depth of (slong, sshort, sdiag) = (13, 13, 15.5).
At this lattice depth, the atoms are in a superfluid state
and not in a Mott-insulating state. In our system, an
atom density has spatial dependence due to a weak har-
monic confinement by laser beams. The trap frequen-
cies of FORT and optical lattice are (ωx, ωy, ωz)/2π =
(129, 46.2, 151) Hz. Assuming a local density approx-
imation, we can calculate the density distribution of
atoms n(µ, r) in the optical lattice by determining chem-
ical potential µ from the total atom number, which
is N = 2.1(1) × 104 (See S.3 in [25]). The Thomas-
Fermi radii are (rx, ry, rz) = (3.07, 8.58, 2.62) µm. At
the trap center, the mean-field interaction amounts to
nUA/J = 8.06, where UA is the interaction strength on
the A-sublattice. In Fig. 2 (c), band calculations for
the maximum density and half of it are plotted in addi-
tion to a single-particle theory. Note that the 1st band
energy at Γ (EΓ

1st) of each interaction strength is sub-
tracted to adjust the energy offset. The experimental
data are in excellent agreement with the theoretical anal-
ysis. While the band dispersion along the Γ-M is robust
against interaction, the band energy is slightly shifted up
around the X point compared with the non-interacting
case. This can be accounted by the concentration of the
wave function on the A- and B-sites at this point.

Next, we describe the band gap measurement.
Initially, a BEC is prepared as a superposi-
tion of eigenstates for the optical Lieb lattice of
(slong, sshort, sdiag) = (13, 13, 15.5). The overlap be-
tween the initial state and the eigenstates of higher
bands is set to 10 %, which is small enough for the
measured band gap not to depend on the higher band
fraction (See S.4 in [25]). The initial lattice depths are
((sxlong, s

z
long), sshort, sdiag) = ((12.31, 14.01), 6.84, 15.24)

for the 1st-2nd band gap (E2−1) measure-
ment and (slong = sxlong = szlong, sshort, sdiag) =
(12.49, 13.08, 17.82) for the 1st-3rd band gap (E3−1)
measurement. After changing the lattice configuration
into the Lieb lattice suddenly, we move the BEC in the
reciprocal space by applying a constant force. During
the subsequent holding time, the relative phase between
band eigenstates evolves at the frequency of the band
gap, resulting in oscillations of the sublattice popula-
tions. To observe the real-space dynamics, we perform
projection measurement of the occupation number
in each sublattice, which we call sublattice mapping
[13]. In this method, we change the lattice potential
to (slong, sshort, sdiag) = (8, 20, 0), where the lowest
three bands consist of the A-, B-, and C-sublattice,
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FIG. 3. (Color online) (a), (b) Oscillation of sublattice
population at Γ point according to (a)E3−1 and (b) E2−1,
respectively. First, we load a BEC into an optical lattice
the configuration of which is different from that of a Lieb
lattice. In this way we create a superposition of (a) the 1st
and 3rd or (b) the 1st and 2nd band eigenstates of the Lieb
lattice. Next, we suddenly change the lattice configuration
into the Lieb lattice, and take various hold time. We observe
the temporal change of the sublattice populations obtained
by the projection measurement described in the text. Each
sublattice occupancy is normalized by the summation over
all of the sublattice occupancy. Green, blue and red cir-
cles are A-, B-, and C-sublattice population, respectively.
Error bar shows the standard deviation of three indepen-
dent scans. Solid lines are fits to the data with damped sine
functions(4). (c) The lowest three bands in the optical Lieb
lattice of (slong, sshort, sdiag) = (13, 13, 15.5). Red and blue
circles are the reconstructed 2nd and 3rd band energies, re-
spectively. Error bars mean the fitting errors. Dashed lines
are the predictions based on a single-particle theory. Dotted
and solid lines are the calculations including the interaction
based on the BdGE with the half and maximum densities,
respectively.

respectively. This maps out sublattice occupations to
band occupations, which can be measured by band
mapping technique.
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FIG. 4. (Color online) (a) Band gaps from the lowest
band to the 2nd band. Dashed black line is the predic-
tion on the single particle theory of the Lieb lattice po-
tential (slong, sshort, sdiag) = (13, 13, 15.5). Solid yellow line
is the calculation including the interaction based on the
BdGE. Thick red, green and blue lines respectively show
the quasimomenta qz = 0.74kBZ, 0.37kBZ, and 0 at which
we have investigated the density dependence of the band
gaps. (b), (c), (d) Band gap versus the atom number for
qz = 0.74kBZ, 0.37kBZ, 0, respectively. Solid and dotted lines
show the calculations including the interaction based on the
BdGE for the maximum and half densities, respectively. Er-
ror bars indicates the fitting errors.

When the superposition of the 1st and 3rd bands is
prepared as an initial state, all of the sublattice popula-
tion oscillate because the wave functions of 1st and 3rd
bands spread over all the sublattices. On the other band,
since the eigenstate of the 2nd band has no amplitude on
A-sublattice, only B- and C-sublattice populations oscil-
late in the case of the superposition of the 1st and 2nd
bands as an initial state. Therefore, we extract the band
gap E3−1 from the frequency of A-sublattice oscillation
(Fig. 3 (a)) and E2−1 from the mean of frequencies of B-
and C-sublattice oscillations (Fig. 3 (b)). Note that the
populations at B- and C-sublattices in Fig. 3 (a) evolve
in the same way, because both of |Γ, B〉 and |Γ, C〉 al-
ways have the same coefficient in the superposed state.
We fit the oscillation of sublattice population with our
empirical model function

F (t) = a e−t/τ sin (2πft+ b) + c (4)

where a, b, c, f, τ are fitting parameters.
In Fig. 3(c) we show the experimentally determined

band energies (solid circles) in the optical Lieb lattice.
The higher band energies are obtained from the combi-
nation of the energy gaps and the energy of the lowest

band described above. The dashed lines are the results
of the calculations based on a single particle theory. It
is clear that the experimentally determined energies are
significantly deviated, in particular, up-shifted and dis-
torted, from the calculated bands, which should be as-
cribed as the interaction-driven effect. Note that a direct
tunneling between B- and C-sublattices which exists in
our Lieb lattice system distorts the flat band even in the
single-particle limit. Theoretically, a Bloch state with a
small fraction of higher bands is regarded as the state af-
ter the weak excitation from the lowest band. Therefore,
we use the Bogoliubov-de Gennes equation (BdGE) to
estimate the interaction effect on the energy gap (See S.2
in [25]). The dotted and solid curves show the results of
the calculations with two different interaction strengths,
respectively. Our calculation shows, in particular, that
the band gaps or excitation energies around the center
of BZ becomes larger as the interaction increases. On
the contrary, the gap to the 2nd band becomes closed
around the BZ edge of X point, as the interaction in-
creases. We interpret this behavior as follows. At X
point, cos(θX) = 0 and sin(θX) = 1, and thus the Bloch
wave function of the 1st band has no spatial overlap with
that of the 2nd band. Therefore, the excited atoms do
not interact with the atoms in the lowest band, result-
ing in the smaller band gap as the interaction energy
increases in the lowest band. On the other hand, be-
cause the 3rd band has large spatial overlap with the 1st
band, the energy necessary to excite a particle to the
3rd band gets larger as the interaction increases. Note
that along the Γ-M direction, cos(θq) = sin(θq) = 1/

√
2,

and thus the 2nd band remains flat because the sub-
lattice distribution does not change. The experimental
data certainly indicate this tendency. Note that due to
decoherence caused possibly by the interaction, the os-
cillations of sublattice populations are damped, which
makes it difficult to measure the frequency around the
exact BZ edge.

Finally, we experimentally investigate dependence of
the band gap on the interaction. The gap energies are
measured with various atom numbers. Here, we focus
on E2−1 along the Γ-X direction (see Fig. 4 (a)). For
a uniform, weakly interacting BEC, the chemical poten-
tial has linear dependence on the atomic density, leading
to N2/5 dependence of the central density. Therefore,
we plot the observed oscillation frequency as a function
of N2/5 in Fig. 4 (b), (c), and (d). The data are in
good agreement with the calculations for the atom den-
sity with half of the maximum value. By extrapolating
the experimental data to a small atom number limit, it
is also confirmed that the band gap at each quasimo-
mentum approaches the prediction of a single-particle
theory.

In conclusion, we have studied an interaction effect
on the Bloch bands for superfluids in an optical Lieb
lattice. We observed that the 2nd band, which is a
flat band in a single-particle description, is significantly
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shifted and distorted along the Γ-X direction by the in-
teraction. Further applications of our method include
the study of an artificial gauge field, which induces the
modification of an energy spectrum and a topologically
nontrivial phase for fermions in a Lieb lattice [26]. In ad-
dition, our technique demonstrated for an optical Lieb
lattice should be used to create and observe an interest-
ing interaction-driven effect such as a swallow tail [27],
in which the strong interaction compared with a band
gap induces the loop structure in the energy band.
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A. Lemâıtre, L. Le Gratiet, I. Sagnes, S. Schmidt, H. E.
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