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In previously identified forms of remote synchronization between two nodes, the intermediate portion of
the network connecting the two nodes is not synchronized with them but generally exhibits some coherent
dynamics. Here we report on a network phenomenon we call incoherence-mediated remote synchronization
(IMRS), in which two non-contiguous parts of the network are identically synchronized while the dynamics
of the intermediate part is statistically and information-theoretically incoherent. We identify mirror symmetry
in the network structure as a mechanism allowing for such behavior, and show that IMRS is robust against
dynamical noise as well as against parameter changes. IMRS may underlie neuronal information processing
and potentially lead to network solutions for encryption key distribution and secure communication.

Communication, broadly defined as information exchange
between different parts of a system, is a fundamental pro-
cess through which collective dynamics arises in complex sys-
tems. Network synchronization [1], whether it is complete
synchrony [2] or a more general form of synchronization [3–
7], is a primary example of such dynamics and is thought
to be largely driven by node-to-node communication. How-
ever, it has recently been shown that so-called remote syn-
chronization [8–15] is possible: two distant nodes (or groups
of nodes) can synchronize even when the intermediate nodes
are not synchronized with them. In this form of synchroniza-
tion, the dynamics of different intermediate nodes generally
show some level of coherence with each other, exhibiting, e.g.,
generalized synchronization or delay synchronization.

In contrast, in this Letter we consider a dynamical state of a
network that we shall call incoherence-mediated remote syn-
chronization (IMRS). The N nodes of the network are orga-
nized into three non-empty groups, A, B, and C, where A is
connected with B, and B is connected with C, but A and C
are not directly connected (as illustrated in Fig. 1). We as-
sume that group B has at least two nodes, and that the nodes
and links within each group form a connected subnetwork.
IMRS is then characterized by (1) a node from group A (de-
noted node 1) and a node from C (denoted node N ) that are
identically synchronized (rather than in weaker forms such as
phase and generalized synchronization), and (2) the dynam-
ics of the nodes in the intermediate group B that are statisti-
cally incoherent with each other. IMRS combines the proper-
ties of remote synchronization mentioned above with those of
chimera states [16–20], which are characterized by the coex-
istence of both coherent and incoherent dynamics in different
parts of the network. Here, however, we lift the assumption of
uniform network typically made in studying chimera states,
and instead ask the following fundamental question: under
what conditions can IMRS be observed? In particular, what
types of network structure allow for this behavior? Below we
answer these questions by mapping them to the problem of
cluster synchronization and using a powerful tool for studying
network symmetry based on computational group theory [7].
Moreover, we show that the incoherent dynamics of group B
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FIG. 1. Remote synchronization between node groups A and C me-
diated by incoherence in group B. The colors of the nodes schemat-
ically represent their states, indicating that nodes 1 and N are iden-
tically synchronized, while the dynamics of the nodes in B are inco-
herent.

is typically also incoherent relative to the dynamics of node 1
(and N ). This suggests applications of IMRS to new forms of
secure communication technologies [21, 22] or new schemes
for secure generation and distribution of encryption keys [23].

We consider a general class of networks ofN coupled iden-
tical dynamical units, whose time evolution is governed by

ẋi = F(xi) + σ

N∑
j=1

AijH(xj), (1)

where xi(t) is the state of the ith unit at time t, ẋ = F(x)
describes the dynamics of an isolated node, σ is the overall
coupling strength, A = (Aij)1≤i,j≤N is the coupling matrix
representing an undirected unweighted network topology of
the type illustrated in Fig. 1, and H(x) is a function determin-
ing the output signal from a node. Within this framework, we
formulate a set of three conditions for IMRS to be observed:

(i) There exists a state in which x1(t) = xN (t) for ∀t.

(ii) The state of synchronization between nodes 1 and N in
condition (i) is stable.

(iii) {xi(t)} and {xj(t)} are not synchronized for all node
pairs and are statistically incoherent for most pairs in B.

(Recall that nodes 1 and N are from groups A and C, respec-
tively.)
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Although condition (i) is dynamical in nature, a network-
structural condition implying condition (i) can be expressed
solely in term of the symmetry of the network. The network
symmetry is represented by the (mathematical) group of node
permutations under which the network structure is invariant
(or, equivalently, of the corresponding permutation matrices
that commute with the adjacency matrix A). A cluster of syn-
chronized nodes can be identified as an orbit of this group,
defined as a set of nodes in which each node can be mapped
to any other by some permutation in the group. From the in-
variance of Eq. (1) under these permutations, it follows that
there is a synchronous state in which all nodes in each orbit
(of the group) have identical dynamics, forming K clusters:
{sk(t)}1≤k≤K , where xi(t) = sk(t) for all t if node i belongs
to cluster Ck. Note that sk(t) can be different for different k
as long as they satisfy the equations obtained by substituting
xi(t) = sk(t) into Eq. (1). Formulating IMRS as such a state,
we see that condition (i) above is equivalent to the existence
of an orbit that intersects with both A and C. We denote this
cluster by C1, from which we choose one node in A as node
1, and one node in C as node N .

The synchronization stability condition (ii) is verified for
a given network structure using the method in Ref. [7]. We
first identify clusters Ck in the network using computational
group theory. We then compute λC1 , the maximum transverse
Lyapunov exponent associated with the modes of perturbation
that destroys the synchronization of cluster C1 (and hence the
synchronization between nodes 1 andN ). Thus, condition (ii)
can be formulated as λC1

< 0.
The statistical coherence in condition (iii) is measured by

cross correlation and mutual information, accounting for pos-
sible coherence with a time lag ∆t. We use Ci,j to denote the
absolute value of the Pearson correlation coefficient between
xi(t) and xj(t+∆t) over a range of t, maximized over a range
of ∆t [24]. Likewise, we use Ii,j to denote the mutual infor-
mation between xi(t) and xj(t+ ∆t) over t, maximized over
∆t [24, 25]. Thus, condition (iii) would be satisfied ifCi,j and
Ii,j are both small for most pairs i and j in B, and Ci,j 6= 1
for ∀i, j (indicating no identical synchronization). We choose
chaotic node dynamics for higher likelihood of having inco-
herence in B, and we further ensure that the dynamics of sk(t)
is chaotic. This condition is equivalent to λ > 0, where λ
is the maximum Lyapunov exponent parallel to the synchro-
nization manifold (associated with perturbations that do not
destroy synchronization of any cluster Ck).

Condition (iii) is also intimately related to network symme-
try; it requires that each cluster in B contain only one node.
What characterizes the structure of networks that satisfy both
this requirement and condition (i)? Based on our numerical
verification for N ≤ 8 nodes, we conjecture that any such
network has a mirror symmetry (possibly after regrouping the
nodes): groups A and C are “mirror images” of each other
(as illustrated in Fig. 1). More precisely, the network struc-
ture is invariant under a node permutation that serves the role
of a “reflection” and maps each node in A to a unique node
in C, but does not move any nodes in B. In particular, this

FIG. 2. Network exhibiting IMRS. (a) Mirror-symmetric structure of
the network, generated with nA = 6, nB = 30, n′B = 2, and p = 0.8.
(b) Pairwise cross correlation Ci,j . (c) Pairwise mutual information
Ii,j . (d)–(f) Phase variable θi as a function of t. In (d), only the
blue curve is clearly visible because the two curves overlap. The
calculations in (b)–(f) are based on iterating Eq. (2) with β = 1.5
and σ = 1.5.

implies that each node in B that connects to A must con-
nect to C in exactly the same way. It also implies that all
nontrivial clusters (i.e., those of size > 1), which we denote
C1, . . . , CK′ (after appropriate re-indexing), span both A and
C in a symmetrical way (involving the same number of nodes
from each group) and collectively cover all nodes in A and C.
This means that the corresponding network dynamics is also
mirror-symmetric: each node in A is identically synchronized
with its counterpart in C (possibly showing different dynam-
ics for different node pairs). In particular, we have identical
synchronization between nodes 1 and N (both belonging to
C1). Moreover, the clusters C1, . . . , CK′ are all intertwined
with each other, i.e., synchronization of these clusters must be
either all stable or all unstable. A group-theoretical origin of
this behavior is argued to be the property that any network-
invariant permutation that swap the nodes in one cluster must
also swap the nodes in each of the other clusters [7], which we
conjecture is guaranteed by the mirror symmetry. Conversely,
if a network with the three-group structure of Fig. 1 has a mir-
ror symmetry, then nodes 1 and N (in A and C, respectively)
are guaranteed to be part of a synchronized cluster. Note that
the mirror symmetry alone does not impose any condition on
the link configuration within B, and hence the clusters in B
can in principle be of size> 1 [which would violate condition
(iii)].

To systematically search for IMRS, we propose the follow-
ing general recipe for designing a system: 1) construct an ar-
bitrary network structure that has a mirror symmetry and sat-
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isfies the size-one cluster requirement in B; 2) select chaotic
node dynamics; 3) find system parameters for which the syn-
chronization between nodes 1 and N is stable (i.e., λC1 < 0)
and the dynamics of sk(t) is chaotic (i.e., λ > 0); and 4) ver-
ify incoherence in B (i.e., small Ci,j and Ii,j). As an example
algorithm for generating networks for step 1 above, we use
the following procedure (for which we provide software; see
SM [26]). Given nA, nB, and nC (= nA) nodes in A, B, and
C, respectively, we first connect each pair of nodes in B with
probability p. Next, we connect node 1 to all the other nodes
in A and node N to all the other nodes in C. The nodes in A
other than node 1 are then paired up with the nodes in C other
than node N . Finally, for each of these node pairs, we choose
n′B nodes randomly from B and connect each of these nodes to
the node pair. An example network constructed by this proce-
dure is shown in Fig. 2(a). The probability of having a cluster
of size > 1 in B can be kept small by making the size of B
large enough. Here we generate networks with nB ≥ 10 and
use only those with no cluster of size > 1 in B.

As an example dynamics for the network leading to IMRS,
we use coupled maps that model the electro-optic experimen-
tal system [18], although we anticipate that continuous-time
systems will also exhibit IMRS (see SM [26], Sec. S1). The
system dynamics is governed by

θt+1
i =

[
βI
(
θti
)

+ σ

N∑
j=1

AijI
(
θtj
)

+ δ

]
mod 2π, (2)

where θti is the phase shift in time step t for the ith compo-
nent of the spatial light modulator array used in the experi-
ment, β is the strength of self-feedback coupling for the ar-
ray components, and the offset δ is introduced to suppress the
trivial solution, θti ≡ 0. We set δ = 0.525 for all computa-
tions for this system. The intensity of light is related to spa-
tially dependent phase shift θ through the nonlinear function
I(θ) := [1−cos(θ)]/2. The dynamics of an isolated oscillator
has a globally stable fixed point for small β, which, through
a sequence of period-doubling bifurcations, becomes chaotic
for larger values of β [see Fig. 3(a)].

As shown in Fig. 3(b), we find that networks generated by
the procedure described above can achieve λC1

< 0 (i.e., sta-
ble synchronization between nodes 1 and N ) when β and
σ are both relatively small. Since these networks all have
a mirror symmetry by construction, they satisfy both condi-
tions (i) and (ii). Figure 3(c) shows that, even when we start
with oscillators that are not chaotic in isolation [β . 4, see
Fig. 3(a)], the dynamics of the clusters sk(t) becomes chaotic
(i.e., λ > 0) as the coupling strength σ is increased. We thus
see that there is a wide range of parameters β and σ for which
the network realizes stable chaotic synchronization. To check
condition (iii), we computeCi,j and Ii,j over time steps 104 ≤
t ≤ 4 × 104 and time delay −50 ≤ ∆t ≤ 50 for β = 1.5
and σ = 1.5 [black crosses in Figs. 3(b) and 3(c)]. The re-
sults, shown in Figs. 2(b) and 2(c), verify that condition (iii)
is indeed satisfied. The corresponding system dynamics is il-
lustrated by the time plots in Figs. 2(d)–(f). Thus, the net-
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FIG. 3. Characterizing the network dynamics. (a) Lyapunov expo-
nent λiso of the isolated node dynamics as a function of self-feedback
strength β. (b) Synchronization stability λC1 of cluster C1 (and thus
between nodes 1 and N ) as a function of β and coupling strength
σ. (c) Lyapunov exponent λ measuring the instability parallel to the
synchronization manifold as a function of β and σ. The exponents
λC1 and λ are averaged over 10 network realizations and 10 initial
conditions.

work exhibits IMRS for these specific parameters. Moreover,
Figs. 2(b) and 2(c) clearly show that the dynamics of the
nodes in B is also incoherent relative to nodes 1 andN . While
Eq. (2) is a discrete-time analog of Eq. (1), we expect IMRS to
be observed for a range of different node dynamics, including
both discrete-time and continuous-time dynamics, as well as
for many mirror-symmetric network topologies not necessar-
ily generated by the procedure described above.

How does IMRS depend on system parameters? To answer
this question, we study the distribution ofCi,j (Fig. 4) and Ii,j
(Fig. S2 in Sec. S2 of SM [26]) over all i 6= j ∈ B as func-
tions of parameters nB, n′B, nA, β, and σ. We verify λC1

< 0
for the entire range of parameter values over which the curves
are drawn in Fig. 4 (see SM [26], Sec. S2 for more details, in-
cluding parameter dependence of λC1 ). As indicated by their
75th and 25th percentiles (dashed curves), the cross correla-
tion and mutual information remain low for most node pairs
in B for a range of system parameters, with the exception of
cases with small σ. The medians of these coherence measures
are mostly monotonically decreasing functions of σ up to the
maximum value of σ (= 1.7) for which λC1 < 0 [Fig. 4(e)
and Fig. S2(e)]. We have Ci,j = 1 at σ = 0, indicating that
all nodes in B are perfectly correlated in that case, simply be-
cause the isolated oscillators all converge to a common stable
fixed point for β = 1.5. The median cross correlation and the
median mutual information appear to be slightly decreasing
functions of nB and n′B, while they seem to be approximately
constant as functions of nA (both for σ = 1.5 and σ = 1)
and β. Note, however, that the synchronization stability does
depend on nA: we observe that nodes 1 and N cannot syn-
chronize stably for nA > 6 for σ = 1.5 [green curves ending
at nA = 6 in Fig. 4(c) and Fig. S2(c)] but remain stably syn-
chronized up to nA = 15 for σ = 1 [blue curves in Fig. 4(c)
and Fig. S2(c)]. The loss of synchronization stability for suf-
ficiently large nA is likely due to incoherent dynamics of the
other nodes in groups A and C (see SM [26], Sec. S3). Since
these nodes are the only ones that directly influence the dy-
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FIG. 4. Influence of system parameters on IMRS. The distribution of the correlation Ci,j between pairs of nodes in B is shown as a function
of parameters nB, n′B, nA, β, and σ. Each panel shows the median (solid curve with dots), the minimum and maximum defining the range
(shaded region), as well as the 75th and 25th percentiles (dashed curves). These quantities are all averaged over 10 network realizations and
10 initial conditions. Unless noted otherwise, all parameters are set to the values used in Fig. 2 (indicated by red dots).

namics of nodes 1 and N (and thus their synchronization sta-
bility), the larger the number of these dynamically incoherent
nodes (i.e., the larger nA), the more difficult for nodes 1 andN
to stably synchronize. Overall, we find that IMRS is observed
for a wide range of structural and dynamical parameters of the
system (see SM [26], Sec. S4 for similar robustness observed
for a continuos-time system).

We also find that the low levels of coherence between node
1 (or N ) and the nodes in B is maintained over a range of
parameter values, following dependence patterns similar to
those of the coherence levels within B (see SM [26], Sec. S5).
Low coherence between periphery and intermediate nodes has
also been observed in certain cases of remote synchroniza-
tion [10, 11] [but with pairs of identically synchronized oscil-
lators in the intermediate part of the network, which violates
the IMRS condition (iii)].

An key aspect of IMRS lies in its behavior against noise.
While the synchronization of nodes 1 and N is robust against
independent noise added to the dynamics in A and C only
up to a certain level (which is expected), IMRS is completely
insensitive to noise in B, even when the noise level is very
high (see SM [26], Sec. S6). This characteristic robustness of
IMRS stems from the mirror symmetry and is also associated
with the dynamical incoherence in condition (iii). In contrast,
(remote) synchronization of nodes 1 and N can be extremely
sensitive to noise in B when some nodes in B are identically
synchronized. This is demonstrated using the network topol-
ogy considered in Ref. [10] (see SM [26], Sec. S7).

Our demonstration of IMRS challenges the notion that
paths of communication between nodes that are exchanging
information should be somehow observable. A particularly
striking feature of IMRS we studied here is that the coupling
between A and B, as well as B and C, is bidirectional. This
allows information to be transferred from A to C through B,
despite the scrambling of that information by the incoherent
chaotic dynamics of B, which reduces the amount of shared
information in B to a level that is too low for eavesdroppers
(as measured by mutual information). This feature fundamen-
tally sets IMRS apart from a master-slave type of chaos syn-
chronization [27], in which the dynamics of B influences that
of A and C, but not vice versa, thus prohibiting communi-
cation between nodes 1 and N . The same behavior can be
observed even when B is replaced by noise, if the average of
the noise is nonzero and its effect is equivalent to parameter

change that drives the dynamics into synchrony [28].

A defining characteristic of IMRS we demonstrated here is
the dynamical incoherence within group B, which is enabled
by the mirror symmetry we established as a general condi-
tion for observing IMRS. While we focused on undirected
networks here, an analog of mirror symmetry can be formu-
lated for directed networks using the notion of input equiv-
alence [4]. Since zero-lag synchronization of distant areas
of the brain has been experimentally observed [29–31], our
results suggest the intriguing possibility that a mirror sym-
metry is hidden deep inside the synaptic connectivity struc-
ture. We hope that our discovery will spark interests of many
researchers and lead to further discoveries of fundamental
connections between hidden network symmetry and emergent
collective behavior in complex systems.
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