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Hole transport experiments were performed on a gated double quantum dot device defined in a
p-GaAs/AlGaAs heterostructure with a single hole ocupancy in each dot. The charging diagram of
the device was mapped out using charge detection confirming that the single hole limit is reached.
In that limit, a detailed study of the two-hole spin system was performed using high bias magneto-
transport spectroscopy. In contrast to electron systems, the hole spin was found not to be conserved
during inter-dot resonant tunneling. This allows one to fully map out the two-hole energy spectrum
as a function of the magnitude and the direction of the external magnetic field. The heavy-hole
g-factor was extracted and shown to be strongly anisotropic, with a value of 1.45 for a perpendicular
field and close to zero for an in-plane field as required for hybridizing schemes between spin and
photonic quantum platforms.

Interest in quantum networks [1] and long-distance
quantum cryptography [2, 3] led to proposals towards
interfacing the photonic and solid-state spin qubits in
gated lateral quantum dot devices [4, 5]. Such an inter-
face is a central element in quantum sensors and quan-
tum repeaters [6, 7], but could also be used to simplify
the layout of multi-qubit gated devices [8]. An inter-
mediate step in the transfer of the photon polarization
state onto the state of the spin involves generation of an
electron-hole pair. Therefore, beside long spin coherence
time, the existing proposals [4, 6, 7] call for optical access
(direct bandgap material) and engineering near-zero ef-
fective g-factor for the electron or the hole. While g∗ = 0
is desired, in practice it should be small enough for the
resulting Zeeman splitting to be smaller than the photon
bandwidth [6, 7]. Currently the longest spin coherence
times have been demonstrated for electron spin qubits
in 28Si[9], but their coupling to light is challenging due
to the indirect bandgap. GaAs electronic devices, while
more promising [4, 5], still require g-factor engineering.

In this Letter, we propose the heavy-hole spin confined
in a gated GaAs double-dot device (DQD) as a candidate
for the solid-state qubit in the photonic interface. We
explore high-bias magneto-transport properties of a p-
type AlGaAs/GaAs DQD [10]. Charge detection is used
to tune the DQD to the two-hole regime, where certain
tunneling transitions requiring spin flips are subject to
Pauli spin blockade [11]. In our device this blockade is
absent. This allows us to map out the energies of the
two-hole quantum dot states with all spin projections as
a function of magnetic field, and to extract the effective
hole g-factor g∗ as a function of the magnetic field tilt an-
gle. We find that g∗ exhibits a dramatic anisotropy, with
a near-zero value for the in-plane field, thereby enabling
the g-factor tuning in situ.

In consequence of the p-type character of the hole

wavefunctions, the valence band includes heavy-hole
(HH) and light-hole (LH) states. The hole properties are
traced to the amount of HH-LH subband mixing [12, 13],
which is related to the details of quantum confinement,
strain, and the spin-orbit interaction. The early pre-
diction of greatly reduced hyperfine interaction between
hole and nuclear spins, and concomitant increased co-
herence times [14, 15], were confirmed experimentally
in systems with small HH-LH mixing realized as self-
assembled dots (SADs) [16–18] or nanowires [19]. In this
regime the strong anisotropy of the hole g-factor is ex-
pected [12]. To date, however, only partial anisotropy
was demonstrated, e.g., in InAs SADs [20] and silicon
nanowires [21]. Holes in GaAs are also subject to strong
Dreselhaus and Rashba spin-orbit interactions, which in-
troduce the coherent spin-flip tunneling [12, 13]. In sili-
con DQDs these interactions are absent, leading to Pauli
spin blockade [21–23]. On the other hand, early exper-
iments on GaAs DQDs in many-hole regime show the
spin-orbit-induced spin-flip transport [25]. In addition,
our device provides a lateral confinement for the HH sub-
band only, while the LH orbitals remain extended across
the sample volume. In contrast to the SADs, where the
LH subband remains confined [24], this property further
decreases the HH-LH mixing.

Figure 1(a) shows a scanning electron micrograph of
the DQD gate layout [26]. As shown by results of elec-
trostatic simulations (Fig. 1(b)), for judiciously chosen
gate voltages this layout creates a potential profile at the
AlGaAs/GaAs heterointerface with two ellipsoidal min-
ima. In Fig. 1(c) we plot the charging diagram, showing
the derivative dISC/dVL of the charge sensor current ISC

over the L-gate voltage VL, as a function of gate voltages
VL and VR. It reveals the charge stability regions of
configurations with different number (nL, nR) of holes in
each QD. The (0,0) state was confirmed using techniques
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FIG. 1. (a) Scanning electron micrograph of the gate layout of
the double dot device. Red (yellow) arrow indicates the trans-
port (charge detection) current path. (b) Simulated potential
profile created by gates at the level of the AlGaAs/GaAs het-
erointerface. The gate voltages have been adjusted to admit
one hole in each dot from the two-dimensional hole gas. Inset:
closeup on the potential of the right-hand dot. The contour
line spacings are 769 µeV in the main graph and 25 µeV in the
inset. (c) Charging diagram obtained by charge detection as
a function of the voltages on the left (L) and right (R) gates.
Square marks the region close to tunnel resonance between
(1,1) and (2,0) configurations.

similar to those used for few-electron QDs [27]. We focus
on the region around the (1,1)–(2,0) charge transfer line
where the Pauli spin blockade is commonly observed in
electron DQDs. Results similar to this region were ob-
tained at the equivalent (1,1)–(0,2) charge transfer line.

Figure 2(a) shows a schematic energy diagram
of our high source-drain bias magneto-transport
measurement. The tunneling follows the scheme
(1,0)→(1,1)→(2,0)→(1,0). In DQDs confining electrons,
this sequence is commonly used to reveal the Pauli spin
blockade mechanism. At low magnetic fields, the lowest-
energy state of the electronic (2,0) configuration is a spin
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FIG. 2. (a) Schematic diagram of the high source-drain bias
magneto-transport measurement. (b) The magneto-transport
triangles at source-drain voltage VSD = 2 mV mapped as a
function of the voltages on the left (vertical axis) and right
gate (horizontal axis) at a fixed magnetic field of 2T perpen-
dicular to the sample. The upper triangle corresponds to the
(1,0)→(1,1)→(2,0)→(1,0) tunneling sequence, while the lower
one corresponds to the (2,0)→(2,1)→(1,1)→(2,0) sequence.
(c) Derivative of the tunneling current as a function of the
voltage VL and the magnetic field, measured at millikelvin
temperatures. The yellow arrow in (b) shows the gate volt-
age sweep trajectory. (d) Theoretically derived energy spec-
trum of the (2,0) system. The energies are measured from
the energy of the state T−(2,0) (two holes spin-down in the
left-hand dot).

singlet S(2,0), while the T (2,0) triplet manifold lies much
higher in energy. The (1,1) configuration, prepared by
tunneling, can be a singlet or a triplet. If it is a triplet
T (1,1), the transport will be blockaded. The blockade
can be lifted at low magnetic fields by mixing of sin-
glet and triplet states by the hyperfine interaction. The
T(2,0) state can enter the transport window, providing
a non-blockaded tunneling path for T (1,1), only at large
bias voltage and detuning [11].

Our hole device is different from the electronic system
in two aspects. First, the HH in III-V materials expe-
riences a strong spin-orbit interaction, causing the hole
spin to rotate during tunneling [12, 13, 26]. In electronic
devices this process was found to be orders of magnitude
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weaker [28]. One expects, therefore, that the Pauli block-
ade will be lifted for all (1,1)→(2,0) tunneling channels.
Second, the energy gap between the S(2,0) and T(2,0)
states is much smaller than in electron dots due to the
large hole mass. This allows one to map out the ener-
gies of the doubly-occupied singlet and triplets on equal
footing.

Figure 2(b) shows the transport triangles obtained by
applying a high DC bias (2 mV) across the device in
the (1,1)–(2,0) regime at a magnetic field B = 2T. We
observe two transport triangles, one corresponding to
the above tunneling sequence, while the other one cor-
responds to the (2,1)→(1,1)→(2,0)→(2,1) sequence in-
volving an additional hole. The resonant features in both
triangles coincide, as in both cases the current is limited
by the tunnel resonances between the (1,1) and (2,0) con-
figurations. Inside the triangle one observes a series of
lines marking high-amplitude tunneling current. These
lines occur whenever the energy of the ground or excited
state of the (2,0) configuration matches an energy level
of the (1,1) configuration.

Figure 2(c) shows the derivative of the tunneling cur-
rent with respect to the left gate voltage VL as a function
of the magnetic field. The sweeping trajectory of the VL

voltage is indicated in Fig. 2(b) by the yellow arrow. The
observed lines can be understood as resonances between
(2,0) and (1,1) states split by magnetic field. The inten-
sity of lines depend on how many Zeeman-split levels are
in resonance and whether spin-flip tunneling process is
involved. The strongest line (red solid line) corresponds
to three simultaneous resonances: T+(1,1) with T+(2,0),
T0(1,1) with T0(2,0), and T−(1,1) with T−(2,0). The sec-
ond strongest line (red dashed) involves one spin flip and
two resonances, T−(1,1) with T0(2,0) and T0(1,1) with
T+(2,0). Finally, the weakest line (red dot-dashed) marks
one resonance of T−(1,1) with T+(2,0). The magneto-
resonance spectra can be understood qualitatively, as-
suming that the spectroscopy of the left dot state is
performed using the lowest-energy polarized hole triplet
T−(1,1). This is the ground state of the (1,1) system at
any finite magnetic field for which the Zeeman energy of
two holes exceeds any correlation corrections, favouring
the singlet ground state of the (1,1) charge configura-
tion. For electrons this condition is already satisfied at
millitesla fields; we expect that for holes the critical fields
are even smaller due to the larger effective g-factor. As
the voltage VL is made more negative, the (2,0) config-
urations are shifted down in energy relative to T−(1,1).
In Fig. 2(c) we are, therefore, mapping out the inverted
energy spectrum of the left dot confining two holes.

Neglecting the diamagnetic shifts and the dependence
of the spin-orbit and Coulomb hole-hole interactions on
the magnetic field, we write the T−(1,1) energy as E1,1 =
E1,1(B = 0) − ḡ∗µBB, where ḡ∗ is the effective hole g-
factor averaged between the two dots. In the (2,0) config-
uration, the singlet state involves two holes on the lowest

single-particle orbital. Its energy ES
2,0 is not renormalized

by the Zeeman term. Next in energy is the triplet mani-
fold. If we denote the triplet energy at zero magnetic field
as ET

2,0, the energies of the two polarized triplets T±(2,0)

are ET±
2,0 (B) = ET

2,0 ± g∗µBB, respectively, while that of

the unpolarized triplet T0(2,0) is ET0
2,0(B) = ET

2,0. Here
g∗ is the effective hole g-factor in the left-hand dot. Since
all these energies depend on the magnetic field differently,
the maxima corresponding to the resonances of E1,1 with
the (2,0) states will form linear features at different an-
gles, as seen in Fig. 2(c). The resonance between E1,1

and ES
2,0 (blue) requires more negative voltage VL with

the increasing field, compensating for the Zeeman shift
of the (1,1) state. The resonance with the T−(2,0) state
(solid red line) evolves almost horizontally with the field,
as energies of both T−(2,0) and T−(1,1) are affected iden-
tically by the Zeeman term. The resonance with T0(2,0)
(dashed red) evolves approximately parallel to the reso-
nance with S(2,0) (blue); the slight difference in angle
corresponds to different diamagnetic corrections to the
energies of the two states. Lastly, the resonance with
T+(2,0) (dot-dash red) evolves at the largest angle, as
the energy difference between it and T−(1,1) is twice the
Zeeman energy. Remarkably, this tunneling resonance
involves two hole spin flips. We note that the high source-
drain voltage allows to assign the spin projection to all
(2,0) states unambiguously based on the slopes of the
observed linear features. The direct resonant tunnel cou-
pling of T−(1,1) to all (2,0) states is a clear evidence of
the spin-orbit mediated spin-flip transport in agreement
with theory [12, 26].

This magneto-transport spectrum is characterized by
the singlet-triplet splitting at zero magnetic field EST =
60 µeV, and the magnetic field corresponding to the
(2,0) singlet-triplet transition BST = 0.65 T (arrows in
Fig. 2(c)). Using the single-particle spectrum calculated
numerically [26] from potential profiles in Fig. 1(b), we
obtain EST = 285 µeV and BST = 2.15T. We account
for hole-hole interactions by renormalizing the singlet
energy by a correction VS , and each of the triplets by
VT . Typically VT < VS [29], i.e., the interactions de-
crease both EST and BST . Parametrizing an approx-
imate magnetic field dependence VST = VT − VS =

−V0
(

1 +
∑4

k=1 ζkB
k
)

(Refs. [26, 29]) we find V0 = 225

µeV, ζ1 = −0.05 T−1, ζ2 = −1.13 T−2, ζ3 = +0.92 T−3,
and ζ4 = −0.22 T−4 by fitting simultaneously EST and
BST . In Fig. 2(d) we plot the results of the theoretical
calculation.

Figure 3(a) shows the tunneling current (not its deriva-
tive) extended over a wider range of perpendicular mag-
netic field. This set of measurements was performed in
the 3He setup which allowed us to tilt the magnetic field
relative to the sample. Figure 3(b) shows a line graph
through the panel (a) at B = 2.95 T. The current is
dominated by the resonances and drops to very low val-
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FIG. 3. (a) Magneto-transport measurement in the 3He sys-
tem as a function of the left gate voltage and the mag-
netic field; the measurement protocol is equivalent to that
in Figs. 2(c,d). (b) A vertical line graph of (a) taken at
B = 2.95 T. (c) Effective hole g-factor extracted from the
magneto-transport spectra as a function of the tilt angle of
the magnetic field with respect to the plane of the sample;
the angle of 90 degrees corresponds to the field perpendic-
ular to the sample plane. Red and blue symbols are mea-
sured values, while the black solid line is a fit to the relation
g∗(θ) = g∗⊥| sin θ| + gmin with g∗⊥ = 1.45 and gmin = −0.04.
Orange (green) symbols mark hole g-factor in InAs SADs,
Ref. [20] (Si nanowires, Ref. [21]).

ues between them. As in Fig. 2(c), we identify the reso-
nant lines as resulting from the energy resonances of the
T−(1,1) state with the four lowest two-hole (2,0) states.
For any magnetic field, the energy gap ∆E(B) between
the consecutive triplet traces is equal to the effective Zee-
man energy. By translating the corresponding voltage
through the lever arm values for our sample, we extract
the effective hole g-factor g∗⊥ = ∆E(B)/µBB = 1.45±0.1
for the left-hand (doubly-occupied) dot. This value is
consistent with Wang et al. [30]. We repeated the exper-
iment using the transition (1,1)→(0,2) with the opposite
source-drain voltage and obtained the same g∗⊥ for the
right-hand dot.

We next turn to study the g-factor anisotropy. Fig-
ure 3(c) shows results extracted from magneto-transport
spectra as a function of the tilt angle θ of the mag-
netic field direction relative to the plane of the sample
(θ = 90◦ is the perpendicular arrangement). The two

series of symbols correspond to two independent mea-
surements taken months apart on different cooldowns.
In the HH limit [26] we expect the g-factor anisotropy
in the form g∗(θ) = g∗⊥| sin θ| with the in-plane g-factor
gmin = g∗(0) = 0 (black line). We find an excellent
agreement, with gmin = −0.04±0.04 obtained by fitting,
as the overlapping transport peaks make the direct mea-
surement at θ ≈ 0 difficult. This large g-factor anisotropy
as a function of tilt, observed here for the first time in
lateral gated devices, is related to the details of confine-
ment of HH and LH states. Both hole subbands are con-
fined vertically at the heterointerface. However, due to
the disparity of the HH and LH effective masses along
z-direction, only HHs are confined laterally by the gate
potentials, while LHs form states propagating in-plane
[26], which suppresses the HH-LH mixing. In Fig. 3(c)
we set the dramatic anisotropy demonstrated in our ex-
periment against the measurements in SADs [20] and sil-
icon nanowire hole QDs [21], where the LH subband is
confined, and in consequence the hole g-factor does not
reach zero for in-plane magnetic field.

In summary, we presented magneto-transport studies
of the lateral gated GaAs DQD in the two-hole regime.
We find that the strong spin-orbit interaction enables
strong resonant spin-flip hole tunneling between dots, a
property of interest for fast coherent spin manipulations.
This channel lifts the usual Pauli blockade mechanism
and enables mapping out of the energies of states with
different spin as a function of detuning and magnetic
field. We find that the holes confined by our device are of
HH character, with a strongly anisotropic g-factor, vary-
ing from g∗ = 1.45 to zero for the field orientation varied
from perpendicular to in-plane direction relative to the
sample. These results suggest that hole devices are in-
deed promising for coherent photon to spin conversion
schemes where a zero g-factor is required to prevent in-
cidental which-path information [6]. Measurements are
in progress to obtain the coherence time for single hole
spins, which is expected to be greatly enhanced over the
electron case.
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