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We study the pairing symmetry of the interlayer paired state of composite fermions in quantum
Hall bilayers. Based on the Halperin-Lee-Read (HLR) theory, the effect of the long-range Coulomb
interaction and the internal Chern-Simons gauge fluctuation is analyzed with the random-phase
approximation beyond the leading order contribution in small momentum expansion, and we observe
that the interlayer paired states with a relative angular momentum l = +1 is energetically favored
for filling ν = 1

2
+ 1

2
and 1

4
+ 1

4
. The degeneracy between states with ±l is lifted by the interlayer

density-current interaction arising from the interplay of the long-range Coulomb interaction and the
Chern-Simons term in the HLR theory.

Quantum Hall systems with even-denominator filling
fractions are well described by composite fermions (CFs)
[1]. A CF in two dimensions is composed of an electron
with an even number of magnetic fluxes attached via the
Chern-Simons gauge field. The attached fluxes cancel the
external magnetic field on average, thus leading to a well-
defined Fermi surface of CFs as theorized by Halperin,
Lee, and Read [2].

In quantum Hall bilayer systems, quantized Hall con-
ductances, indicative of incompressible states, are ob-
served when each layer is at even-denominator filling
fractions and two layers are separated by short distance.
Such systems are realized in a single wide quantum well
[3], double quantum wells [4], and more recently, bilayer
graphene [5–8]. Tunneling spectroscopy [9, 10], Hall drag
[11], and counterflow measurements [12, 13] demonstrate
the formation of an exciton superfluid phase for small
layer distances [14–16]. On the other hand, the bilayer
system is described by two composite Fermi liquids with
interlayer interactions at large distance. From a theo-
retical viewpoint, Bonesteel et al. [17, 18] showed that
such a system is unstable to Cooper pairing between
CFs on the two different layers. The pairing interac-
tion arises from the long-range Coulomb interaction and
fluctuations of the Chern-Simons gauge fields. Using the
random-phase approximation (RPA) for the gauge field
propagator, Refs. [17, 18] derived the most singular part
of the pairing interaction. As recognized by the authors,
at this level of approximation, pairing interactions in all
angular momentum channels are degenerate.

In this paper, we study the energetically favored pair-
ing symmetry of bilayer quantum Hall systems due to the
effective interaction between CFs obtained by the RPA.
We go beyond the previous analyses to include the ef-
fect of the time-reversal breaking external magnetic field
on the effective interaction between CFs. This effect ap-
pears through an interlayer density-current interaction
mediated by the Chern-Simons gauge field. The result-
ing pairing interaction between CFs lifts the degeneracy
between pairings in angular momentum +l and −l chan-
nels. We show that the interlayer paired state with a
relative angular momentum l = +1 is favored at filling

ν = 1
2 + 1

2 and 1
4 + 1

4 . Here we define the angular mo-
mentum of the Moore-Read Pfaffian state [19] as l = +1.

Model. We consider a bilayer system of CFs with layer
spacing d in the presence of the long-range Coulomb
interaction [Fig. 1(a)]. We assume that the filling
fraction is the same for both layers. In the imagi-
nary time formalism, the partition function is Z =∫ ∏

sDψ
†
sDψsDa(s)Da

(s)
0 e−S , with the action S =∫ β

0
dτ
∫
d2rL(r, τ). The Lagrangian density L is given

by [17, 18, 22]

L(r, τ)

=
∑
s

{
ψ†s(r, τ)

[
∂τ + ia

(s)
0 (r, τ)

]
ψs(r, τ)

+
1

2m∗
ψ†s(r, τ)

[
−i∇− a(s)(r, τ) + eA(r)

]2
ψs(r, τ)

− µψ†s(r, τ)ψs(r, τ)

}
−
∑
ss′

i

2π
K−1
ss′ a

(s)
0 (r, τ)ẑ · [∇× a(s′)(r, τ)]

+
1

2

∑
ss′

∫
d2r′δρs(r, τ)Vss′(r − r′)δρs′(r

′, τ), (1)

where ψs represents the CF field with s = 1, 2 (or ↑, ↓)
being a layer index, m∗ is the effective mass of the CFs,

a(s) and a
(s)
0 are the Chern-Simons gauge fields, and A

is the U(1) gauge field for the uniform external magnetic
field B along the z direction. Here we employ units where
~ = c = 1, and the Coulomb gauge for the Chern-Simons
gauge field; ∇ · a(s) = 0. The electron charge is −e.
The filling fraction of each layer is 2πne/(eB), where ne
is the electron density, and µ is the chemical potential.
The energy dispersion is εk = k2/(2m∗), and the Fermi
wave vector kF is given by kF =

√
4πne =

√
2ν/l0, where

the magnetic length is l0 = (eB)−1/2. The Coulomb in-
teraction Vss′(r) = e2/(εr) (s = s′) or e2/(ε

√
r2 + d2)

(s 6= s′) [20] acts on the density fluctuation δρs(r, τ) =
ψ†s(r, τ)ψs(r, τ)− ne. The elements of the K matrix are
taken as K11 = K22 = φ̃ and K12 = K21 = 0, with the
integer φ̃ corresponding to the number of fluxes attached

to an electron. This is comfirmed by integrating out a
(s)
0 ,
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FIG. 1: (a) Geometry of the bilayer system. The magnetic
field B is applied upward through the two layers with the
distance d. An interlayer paired state with a relative angular
momentum l gives a winding phase 2πl when one moves a
CF counterclockwise around another in the other layer. (b)
Effective interaction for CFs. µ = 0 (1) at a vertex means
a coupling between the density (current) fluctuation of CFs
and the Chern-Simons gauge field.

to obtain the constraint ψ†sψs = ẑ ·∇×a(s)/(2πφ̃). Note
that the sign of φ̃ represents the direction of the magnetic
field, and it changes by time-reversal operation; we take
φ̃ > 0 in the following analysis to make the direction of
the magnetic field point upward. The filling fraction of
each layer is φ̃−1, so that the CFs feel effectively no mag-
netic field on average. The density fluctuation is given
by

δρs(r, τ) =
1

2πφ̃
ẑ · ∇ × [a(s)(r, τ)− eA(r)]. (2)

Effective interaction. The effective action for the gauge
field is obtained by a saddle-point approximation with ex-

pansion about the point where a
(s)
0 = 0 and a(s)−eA = 0.

With the Coulomb gauge condition, the gauge fluctua-

tion in the spatial part can be written by a
(s)
1 (q, iωm) =

ẑ ·
{
q̂ ×

[
a(s)(q, iωm)− eA(q)

]}
, where ωm = 2mπT is a

bosonic Matsubara frequency. Up to the second order in
the gauge field, the effective action is

Seff =
1

2
T
∑
ωm

∫
d2q

(2π)2

∑
ss′

∑
µ,ν=0,1

a(s)
µ (q, iωm)

×D−1
sµ,s′ν(q, iωm)a(s′)

ν (−q,−iωm). (3)

It is useful for later analysis to decompose the gauge

field into in-phase and out-of-phase fluctuations a
(±)
µ =

(a
(1)
µ ± a

(2)
µ )/
√

2, with the corresponding propagator
D±,µν . D−1

±,µν is obtained with the RPA [17, 18, 23, 24],
whose singular terms for ω/εF � (q/kF )2 � 1 and

q � d−1 are

D−,11(q, iωm) ≈ − 1

χ̃dq2 + kF
2π
|ωm|
q

, (4a)

D+,11(q, iωm) ≈ − 1
e2

πεφ̃2
q + kF

2π
|ωm|
q

, (4b)

D−,01(q, iωm) = D−,10(q, iωm) ≈ 1

χ̃dq2 + kF
2π
|ωm|
q

q

m∗φ̃
,

(4c)

with χ̃d = 1
24πm∗ + e2d

2πεφ̃2
+ 1

2πm∗φ̃2
.

From the effective action and the gauge propagator,
the effective interaction between the CFs [Fig. 1(b)] is
obtained by

V =
1

2

∑
s1s2s3s4

ψ†s1(k + q, iεn + iωm)ψ†s2(k′ − q, iε′n − iωm)

× V eff
s1s2s3s4(k,k′, q, iωm)ψs3(k′, iε′n)ψs4(k, iεn),

(5)

where εn = (2n + 1)πT is a fermionic Matsubara fre-
quency, and the matrix element is

V eff
s1s2s3s4(k,k′, q, iωm)

=−
∑

µ,ν=0,1

Mµν(k,k′, q̂)
[
D+,µν(q, iωm)(σ0)s1s4(σ0)s2s3

+D−,µν(q, iωm)(σ3)s1s4(σ3)s2s3
]
, (6)

with

Mµν(k,k′, q̂) =
1

2

(
1 −i ẑ·(q̂×k

′)
m∗

i ẑ·(q̂×k)
m∗

(q̂×k)·(q̂×k′)
m∗2

)
µν

, (7)

which dictates the coupling of the Chern-Simons gauge
field fluctuation to the CFs. Here the Pauli matrix σα
(α = 0, ..., 3) acts on layer indices.

The dominant contribution in the effective interaction
at small q comes from the out-of-phase fluctuation of the
current-current correlation D−,11. Preceding analysis ex-
plained the existence of a stable interlayer paired state
by taking only the current-current propagator D±,11

[17, 18]. However, this is not enough to examine the
stable pairing symmetry because time-reversal symme-
try breaking by the external magnetic field is absent. To
this end, it is necessary to include the density-current
propagators D±,01 and D±,10, which are induced by the
Chern-Simons term and change sign under time reversal
(φ̃→ −φ̃). In the following analysis, we include all terms
in the effective interaction (6) on an equal footing.

Pairing symmetry and wave functions. We investi-
gate the stable pairing state using the framework of the
Eliashberg theory. Here the Green’s function of the CFs
in the Nambu space is written as

G−1(k, iεn) =

(
(iεnZn − ξk)σ0 φ̂n(k)

φ̂†n(k) (iεnZn − ξk)σ0

)
, (8)
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where Zn is the quasiparticle residue, φ̂n(k) is the anoma-
lous self-energy, and ξk = εk − µ. The gap function is
given by ∆n(k) = φ̂n(k)/Zn. We focus on fully-gapped
interlayer paired states. With the in-plane rotational

symmetry, we have φ̂
(l)
n (k) = φn(iσ2)eilθk (even l), or

φ̂
(l)
n (k) = φn(iσ3σ2)eilθk (odd l), where l is the relative

angular momentum and θk is the azimuth of k [25].
The Green’s function G(k, iεn) yields the effective ac-

tion for the CFs. Recalling the BCS theory, we obtain
the ground state of the CFs as

|ΨCF〉 ∝
∏
k

(1 + gkc
†
k↑c
†
−k↓)|0〉. (9)

|0〉 is the vacuum containing no particles, c†ks creates a
CF of momentum k on layer s, and the function gk is
gk = φne

ilθk/(ξk + Ek), with Ek =
√
ξ2
k + |φn|2 [24].

The wave function of a system with N electrons in each
layer is obtained by

ΨCF({r↑}, {r↓}) = det[g(ri↑, rj↓)], (10)

where g(ri↑, rj↓) is the Fourier transform of gk;
g(ri↑, rj↓) = L−2

∑
k gke

ik·(ri↑−rj↓) (L2: the area of the
system).

The electron wave function for an interlayer paired
state generally has a form

Ψ({z}, {w}) =PLLL

∏
i<j

(zi − zj)φ̃
∏
i′<j′

(wi′ − wj′)φ̃

× det[g(zi, wj)], (11)

where PLLL is the projection operator onto the lowest
Landau level. Here we introduce the complex representa-
tions of the coordinate zi = xi↑−iyi↑ and wj = xj↓−iyj↓
[26]. The first two terms in the right-hand side describe
the fluxes attached to the electrons. With an even φ̃,
this bosonic part corresponds to the Halperin (φ̃, φ̃, 0)
state [27]. For an interlayer paired state with an angular
momentum l, we have g(zi, wj) ∼ (zi − wj)−l in short
distances [24], which produces a winding phase 2πl; see
Fig. 1(a). Using the Cauchy identity, the paired CF part
can be regarded as the (l, l,−l) state for a weak-pairing
case [28].

Energetics of paired states. The quasiparticle residue
Zn receives a correction from the exchange interaction

Vex(k, q, iωm)

=−
∑
µν

Mµν(k,k + q, q̂) [D+,µν(q, iωm) +D−,µν(q, iωm)] ,

(12)

and the anomalous self-energy φ̂n(k) is related to the
interaction in the Cooper channel

Vc(k, q, iωm)

=
∑
µν

Mµν(k,−k − q, q̂) [D+,µν(q, iωm)−D−,µν(q, iωm)] .

(13)

In the Cooper channel, D+ and D− have the different
signs, which reflects the fact that the two layers have the
opposite a(−) gauge charges. Importantly, off-diagonal
terms in Mµν , which correspond to density-current in-
teractions and break time-reversal symmetry, affect only
Vc.

We assume ∆n(k) � εF , so that the pairing occurs
only on the Fermi surface. Then we define the effective

coupling constants for Zn and φ̂
(l)
n (k) as λZ,m and λ

(l)
φ,m,

respectively:

λZ,m =

∫
d2q

(2π)2
δ(ξk+q)Vex(k, q, iωm),

λ
(l)
φ,m =

∫
d2q

(2π)2
δ(ξk+q)Vc(k, q, iωm)

(
1 +

q

kF
eiθq

)l
,

(14)

with the condition |k| = kF . The effective coupling con-
stants are related to the Eliashberg equations [24]

(1− Zn) εn = −πT
∑
ωm

λZ,mZn+m(εn + ωm)√
Z2
n+m(εn + ωm)2 + |φ(l)

n+m|2
,

φ(l)
n = −πT

∑
ωm

λ
(l)
φ,mφ

(l)
n+m√

Z2
n+m(εn + ωm)2 + |φ(l)

n+m|2
. (15)

The stable pairing symmetry can be examined from

λ
(l)
φ,m, shown in Figs. 2(a)-(c). The integrations in

Eq. (14) have divergences as q → 0, and a cutoff qc =
10−5kF is introduced to cure them [24]. Negative values

of λ
(l)
φ,m mean attractive interaction at ωm, and the stable

pairing symmetry will be the one that has the strongest
attractive interaction.

The differences of the effective coupling constants

∆λ
(l)
φ,m = λ

(l)
φ,m − λ

(0)
φ,m clearly display the stable pairing

symmetry [Figs. 2(d)-(f)]. They do not have a singular-
ity, and hence the cutoff is not necessary. We find that
the l = +1 state is favored at all frequencies when the
filling fraction is ν = 1

2 + 1
2 or 1

4 + 1
4 . The result sug-

gests that a Cooper pair in the interlayer paired phase
has an angular momentum l = +1. In contrast, the l = 0
state is favored at small frequencies for ν = 1

6 + 1
6 . We

note that the degeneracy of the states with ±l is lifted
since the time-reversal symmetry is broken due to the
coupling of the density and current fluctuations via the
Chern-Simons term.

The layer spacing and the effective mass dependences

of ∆λ
(l)
φ,m at ν = 1

2 + 1
2 are also examined (Fig. 3). As

the layer spacing d decreases, the differences of ∆λ
(l)
φ,m in-

crease, but the ordering remains unchanged. Controlling
(e2/εl0)/εF , proportional to the effective mass m∗, also

does not change the ordering of ∆λ
(l)
φ,m. Similar results

for other filing fractions are provided in Supplemental
Material [24].
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FIG. 2: Frequency dependence of (a)-(c) the effective coupling constants λ
(l)
φ,m and (d)-(f) the difference ∆λ

(l)
φ,m = λ

(l)
φ,m−λ

(0)
φ,m.

We set the filling fraction (a), (d) ν = 1
2

+ 1
2
, (b), (e) ν = 1

4
+ 1

4
, and (c), (f) ν = 1

6
+ 1

6
. The ratio of the Coulomb energy

to the Fermi energy is (e2/εl0)/εF = 1 and the layer spacing is kF d = 1. At filling ν = 1
2

+ 1
2

and 1
4

+ 1
4
, the l = +1 state is

favored for all frequencies. In contrast, the l = 0 pairing is stable for low frequencies at ν = 1
6

+ 1
6
.

(a) (b)
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FIG. 3: (a) Layer spacing dependence of ∆λ
(l)
φ,m. We set

(e2/εl0)/εF = 1 and ωm = 0 at ν = 1
2

+ 1
2
. Reducing the

spacing makes the interaction strength stronger. (b) Effective

mass dependence of ∆λ
(l)
φ,m. Note m∗ ∝ (e2/εl0)/εF . We set

kF d = 1 and ωm = 0 at ν = 1
2

+ 1
2
. In both cases, the ordering

of ∆λ
(l)
φ,m does not change. At ν = 1

2
+ 1

2
, the l = +1 pairing

is favored at any cases. ∆λ
(+2)
φ,0 identically vanishes for φ̃ = 2.

See also Eq. (17).

Discussions. It is instructive to examine λ
(l)
φ,m using

the small-q expansion of Vc(k, q, iωm). A formation of
a paired state is explained by considering the singular
terms at ωm = 0:

λ
(l)
φ,0 =

1

(2π)2

kF
m∗

∫ 2kF

0

dq

[
− 1

χ̃dq2
+

1
e2

πεφ̃2
q

+O(q0)

]
,

(16)

which is independent of pairing symmetries. These sin-
gularities are smeared at finite frequencies, see Eq. (4).
λZ,m also has the similar structure, but it does not dis-
turb a formation of pairing [29]. The first term represents
attractive interaction originated from the out-of-phase

fluctuation a
(−)
1 because a

(−)
µ sees the CFs in the differ-

ent layers as oppositely charged. The second term comes

from the in-phase fluctuation a
(+)
1 , which gives repulsive

interaction.
In Eq. (16), the effect of the Chern-Simons term and

hence time-reversal symmetry breaking is absent in the
singular terms. The difference is found from q0 order; we
obtain

∆λ
(l)
φ,0 =

1

4π2kF

∫
dq

[
1

2χ̃dm∗

(
l2 − 4l

φ̃

)
+O(q)

]
(17)

for qd � 1. It gives a good guideline for understanding
the stable pairing symmetry. The quantity l2 − 4l/φ̃ is
negative for φ̃ = 2 and l = +1, which explains negative

∆λ
(l)
φ,m at ν = 1

2 + 1
2 . It also nicely dictates the ordering of

∆λ
(l)
φ,m at low frequencies, while higher order corrections

should be considered if l2 − 4l/φ̃ = 0. For example, at
ν = 1

4 + 1
4 , l = +1 gives l2−4l/φ̃ = 0, but still the l = +1

state is favored.
The small-q expansion (17) moreover reveals the mech-

anism of stabilizing the l = +1 state. The l2 term orig-
inates from the current-current interaction and the 4l/φ̃
term from the density-current interaction. Both are me-
diated by the out-of-phase gauge fluctuation. Since the
current-current interaction is isotropic, it favors the l = 0
state and increases the energy of paired states with higher
angular momentum. In contrast, the density-current in-
teraction can be attractive or repulsive depending on the
direction of the external magnetic field and the pairing
symmetry. If it is attractive and exceeds the repulsion for
the l 6= 0 states, there is a chance of pairing with finite
orbital angular momentum. This occurs only for l = +1
and φ̃ ≤ 4 (provided φ̃ > 0), which explains the stable
l = +1 state.
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The l = +1 state of CFs has the opposite angular
momentum to the fluxes attached to electrons. This is
seen from the electron wave function [Eq. (11)]. For small
distances, it has a form

Ψ({z}, {w}) ≈
∏
i<j

(zi−zj)φ̃
∏
i′<j′

(wi′−wj′)φ̃·det

(
1

zi − wj

)
,

(18)
which shows the opposite angular momenta for the fluxes
and interlayer pairing.

Our finding of the interlayer paired state with l = +1
at large layer spacing is consistent with a preceding study
[30], which estimated the pairing symmetry within the
BCS theory. The properties of this l = +1 state are
studied also in Ref. [22] without energetics. On the other
hand, numerical studies of finite size quantum Hall bi-
layers on a sphere seem to infer a paired CF phase of
l = −1 interlayer paired state at ν = 1

2 + 1
2 [31, 32]. This

l = −1 state was found to be an exciton condensate by a
very recent paper [33], which preserves the particle-hole
symmetry of half-filled Landau levels. Here we focus on
the time-reversal symmetry breaking due to the exter-
nal magnetic field, instead of the particle-hole symmetry,
only present in the case of ν = 1

2 + 1
2 . The origin of

the discrepancy in the stable pairing channel is presently
unclear.

Conclusion. We have studied the pairing symmetry of
interlayer paired states in quantum Hall bilayers by tak-
ing into account of the density and current fluctuations
of CFs, and have found the l = +1 pairing is energeti-
cally favored at the filling fraction ν = 1

2 + 1
2 and 1

4 + 1
4 .

The Chern-Simons term couples the density and current
fluctuations, which breaks the time-reversal symmetry to
lift the degeneracy of ±l states.
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