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It is proposed to replace the traditional counter-propagating laser seed in backward Raman ampli-
fiers with a plasma wave seed. In the linear regime, namely for constant pump amplitude, a plasma
wave seed may be found by construction that strictly produces the same output pulse as does a
counter-propagating laser seed. In the nonlinear regime, or pump-depletion regime, the plasma-wave
initiated output pulse can be shown numerically to approach the same self-similar attractor solution
for the corresponding laser seed. In addition, chirping the plasma wave wavelength can produce the
same beneficial effects as chirping the seed wave frequency. This methodology is attractive because
it avoids issues in preparing and synchronizing a frequency-shifted laser seed.

PACS numbers: 52.35.Mw, 52.59.Ye, 42.65.Yj

To overcome the thermal damage limit of conventional
materials [1, 2], it has been proposed to employ plasma
to mediate intense laser amplification [3, 4]. Different
backscattering coupling techniques were then explored,
including Compton scattering [3, 5], resonant Raman
scattering [4, 6–12], Brillouin scattering [13–17], and
chirped pump Raman amplification [18]. In a Raman
amplifier, a long pump laser pulse deposits its energy
to a counterpropagating, short, amplified pulse medi-
ated by a plasma wave. The amplified pulse duration
contracts while its amplitude grows, thereby producing
an ultra-intense laser pulse. To initiate the amplifica-
tion, the amplified pulse is seeded by a short laser seed,
down-shifted from the pump frequency by the plasma
frequency, and synchronized to meet the pump as the
pump leaves the plasma. Preparing such a frequency-
shifted, synchronized laser seed represents a significant
technological challenge.

It has been proposed for strongly-coupled Brillouin
scattering to form a laser seed by reflection of the pump
[19]. However, a simple reflection does not produce the
frequency downshift necessary for Raman resonance. It
is proposed here instead to replace the laser seed with a
plasma wave seed. The plasma wave has negligible group
velocity, so without regard for synchronization, the am-
plification process is triggered only when the pump wave
reaches it. In Fig. 1, we compare seeding by a laser pulse
(a) and by a plasma wave (b). For laser seeding, there
exist solutions in which an intense counter-propagating
wave is produced, with pump depletion (c), in which the
counter-propagating pulse consumes essentially all the
energy of the pump beam, while contracting in time [4].
These solutions give rise to extreme intensities. However,
there are other solutions, depending on how the laser seed
is prepared with a front that is not steep enough, or with
not enough initial energy content, in which these promis-
ing solutions do not obtain [20]. The question to be an-
swered here is whether one can construct with a plasma
wave seed the same promising solutions that were con-
structed with a suitably constructed laser seed.

What is shown here is that, in fact, such solutions for
the counter-propagating pulse, which we shall call the
“probe pulse”, can be constructed for the plasma wave
seed as well, and that they are attractor solutions. For
nearly all laser-seeded interactions resulting in complete
pump depletion, a plasma-wave-seeded interaction can
be found to produce the same time-asymptotic output
pulse. This reachable subset includes the advantageous
output pulses depicted in Fig. 1(c). The key plasma pa-
rameters for efficient amplification [21] will remain the
same. Moreover, we show that the advantages that ac-
crue to laser seeding through frequency chirping [22] can
be realized as well through plasma wave seeding with
wavelength chirping.
To proceed, consider the three-wave resonant Raman

coupling process [23]. For the case of the seeded plasma
wave, an electron density ripple is produced, δn, with a
wavevector ~kf . This ripple is produced in only a small
localized region at the far end of the plasma, at the end
where the pump wave exits. When encountered by the
incident pump laser with a wavevector ~ka, electrons oscil-
late at velocity ~v, and hence induce a transverse current
~j = −e~vδn with a wavevector ~kb = ~ka − ~kf , where e is
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FIG. 1. Seeding of the amplified output pulse. The pump
beam is injected at the right. (a) Triggered by a counter-
propagating laser seed. (b) Triggered by a stationary plasma
wave seed. (c) In the case of an advantageous result, the
amplified output pulse assumes a π-pulse shape accompanied
by depletion of the pump laser.
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the elementary charge. If the wavevector and frequency
of the transverse current ~j are properly matched, a probe
beam is generated. Importantly, for efficient Raman am-
plification, the dispersion relation determines the choice
of ~kf such that (ωa − ωf )

2 = ω2
p + c2(~ka − ~kf )

2, where

ωa is the pump frequency and ωf =
√

ω2
p + 3v2

th
k2f is the

plasma seed frequency. Here, ωp and vth are the plasma
frequency and the electron thermal velocity, respectively.
For cold and underdense plasmas, ωf ≈ ωp ≪ ωa; hence,
kf ≈ 2ka. Note that in the case of the laser seed, the
frequency ωb is red detuned from the pump frequency
by ωf . In contrast, the plasma wave seed should have
the appropriate wavelength, and then the appropriately
red-tuned frequency probe is automatically generated.
To develop an equivalence rule between laser and

plasma seeds, we make the reasonable assumption that
similar linear solutions (constant pump amplitude) will
transition to the same nonlinear asymptotic attractor so-
lutions which feature pump depletion. This assumption,
of course, must be checked. However, the linearization al-
lows us to rigorously construct a plasma wave seed with
Green’s function response identical to that of a laser seed
that has the desired wavefront sharpness and intensity.
Consider the configuration as illustrated in Fig. 1(b).

At t = 0, the pump coming from the right edge meets the
Langmuir wave at z = 0. We describe the envelopes of
pump and probe lasers using the wave vector potentials
a and b, normalized such that the pump intensity is Ia =
2cε0(πmec

2|a|/eλa)
2 = 1.37×1018(a/λa[µm])2[W cm−2],

and similarly for Ib; f is the envelope of Langmuir wave
normalized to V f = (e/mec)|Ee|, where V ≈ √

ωaωp/2
for underdense plasmas (i.e., ωa ≈ ωb ≫ ωp with ωb

being probe wave frequency) and linearly polarized op-
tical beams. Without losing generality, we assume real
a and keep b and f complex. Here me is the electron
mass; Ee is the electrostatic field of the Langmuir wave;
c is the speed of light; and ε0 is the permittivity of free
space. For simplicity, we neglect, at this stage, the group
velocity dispersion (GVD), relativistic nonlinearity, and
kinetic effects. The resonant three-wave equations in cold
plasma can then be written as [4]

at − caz = −V bf, bt + cbz = V af∗, ft = V ab∗, (1)

where the subscriptions t and z denote the partial time
and z derivatives, respectively.
In the linear stage, before the pump beam gets depleted

(i.e., a remains constant), the solution to Eqs. (1) can be
obtained [24] for b(t, z) = bf(t, z) + bb(t, z), where

bf(t, z) =

∫

dz′Gbf(t, z − z′)f0(z
′), (2)

bb(t, z) =

∫

dz′Gbb(t, z − z′)b0(z
′), (3)

are the components of the probe generated by a plasma

seed f0(z) and a laser seed b0(z), respectively, and

Gbf(t, z) =
γ0
c
I0(ξ) ·Θ(t− z

c
), (4)

Gbb(t, z) =
1

γ0

∂

∂t
Gbf(t, z)

=
γ0
c

√

z

ct− z
I1(ξ) ·Θ(t− z

c
) +

1

c
δ(t− z

c
), (5)

are the Green’s functions associated with the correspond-
ing seeds [25]. Here I0(·) is the zeroth order mod-
ified Bessel function, Θ(·) is the Heaviside function,
γ0 = a0V denotes the linear temporal growth rate, and
ξ = 2(γ0/c)

√

z(ct− z).
In laser-seeded amplification, f0 = 0 and b0 6= 0. The

probe beam comprises the initial laser seed [the second
term in Eq. (5)] and the generated components from
three-wave process [the first term in Eq. (5)]. The gen-
erated component grows quasi-exponentially and hence
eventually dominates the probe. For a given laser seed,
b0(z), we now look for a plasma seed, f0(z), such that
the resulting probe (in the linear regime) is the same,
i.e., bf(t, z) = bb(t, z).
First, in analyzing the Green’s functions, note that

c

γ0

∂

∂z
Gbf(t, z) = −Gbb(t, z)+

γ0
c

√

ct− z

z
I1(ξ) ·Θ(t− z

c
),

(6)
where the last term can be neglected at the wavefront
z−ct ≪ z. The identity (6) suggests taking the envelope
of plasma wave seed to be

f0(z) =
c

γ0

∂

∂z
b0(z), (7)

so that the generated probe beam can be found using
integration by parts

bf(t, z) =

∫

dz′Gbf(t, z − z′)
c

γ0

∂

∂z′
b0(z

′)

= −
∫

dz′b0(z
′)

c

γ0

∂

∂z′
Gbf(t, z − z′)

∼=
∫

dz′Gbb(t, z − z′)b0(z
′). (8)

Comparing Eqs. (3) and (8) shows that the plasma wave
seed, initiated according to Eq. (7), generates asymptoti-
cally a probe beam that has the identical wavefront which
is generated by use of a laser seed.
As the probe pulse propagates and grows, if initially

short enough, it should eventually deplete the pump and
enter into the nonlinear or so-called “π-pulse” regime,
characterized by the self-similar contracting pulse enve-
lope [4]. The asymptotic equivalence expressed by Eq. (7)
suggests that asymptotically identical pulses in the linear
regime should evolve to identical pulses in the nonlinear
regime. In the limit of short (delta function) laser seeds,
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FIG. 2. (Color online). (a) Envelopes of plasma seed (blue
solid line) and laser seed (red dashed line). (b)-(e) Amplified
probe pulse at times γ0t = 1, 5, 15, and 40. Blue solid lines
correspond to plasma seed; red dashed lines to laser seed.

and correspondingly short plasma seeds, a formal equiv-
alence can be made [24]. While the finite width case
does not follow rigorously, we show numerically that the
equivalence in fact does extend to finite pulse widths.

Thus, for finite width seeds, by numerically solv-
ing Eqs. (1), we compare amplification triggered by
a plasma seed to that by a laser seed. As shown
in Fig. 2(a), the laser seed envelope is Gaussian with
b0(z) = 0.03a0 exp[−(1 + γ0z/c)

2/σ2] with normalized
width σ = 0.5. Following the equivalence rule in Eq. (7),
the plasma seed is taken as f0(z) = (c/γ0)∂b0(z)/∂z.
The two peaks in f0 differ by a phase difference of π. In
Fig. 2(b), we observe, at γ0t = 1, that the probe beam
generated by the plasma seed has a wavefront that ex-
actly matches the laser seed. The identical wavefronts
generated by different seeds ensure the same Raman am-
plification throughout γ0t = 40, as shown in Fig. 2(b)-
(e). They both reveal similar π-pulse structures, with the
amplitude in its leading peak increasing linearly and the
pulse duration similarly contracting linearly in distance.

While we have constructed an envelope of the plasma
seed that approaches the corresponding attractor solu-
tion of the laser seed, it is not necessarily a unique cor-
respondence. Note that, while the laser seed has but
one, the plasma seed in Fig. 2(a) has two maxima, or
two humps. But the asymptotic solution clearly depends
on only the first hump, since the pump interaction with
that hump will clearly shadow the second hump. Indeed,
removing the second hump will give the identical asymp-
totic solution, which in practice makes easier the setting
up of the plasma wave seed.

To examine kinetic effects using laser and plasma seeds,
we conducted one-dimensional particle-in-cell (PIC) sim-
ulations (using the code EPOCH [26]). For definite-

ness, we considered parameters similar to those of re-
cent experiments [7, 11]. The electron density is ne =
1.5 × 1019cm−3 and accordingly ωp = 2π × 35THz.
The pump laser has wavelength λa = 0.8µm and in-
tensity Ia = 0.4PWcm−2. The linear growth rate is
γ0 = 5ps−1. Electrons are initialized to 10 eV, which
avoids Landau damping [27]. A cell size of 4 nm is used
to match the Debye length, with 800 electrons per cell
to reduce charge density fluctuations. Calculations are
done in a 60µm window moving with the group velocity
of the probe (vg = 0.9948c). Collisions and ion motion
are ignored.

The simulation results are shown in Fig. 3. The sim-
ulation includes, in addition to kinetic effects, effects
such as GVD and relativistic nonlinearity, neglected in
the hydrodynamic analysis. The laser seed is Gaus-
sian with width 10µm ≈ 0.16c/γ0, and peak intensity
0.8TWcm−2. Its frequency is set at ωb = 2π× 340THz,
obeying the frequency matching. For the plasma wave
seed, as discussed, the double peak structure with a π-
phase difference may be eschewed in favor of a single
peak. Thus, we use a Gaussian to approximate the lead-
ing peak, with a normalized width 7.1µm ≈ 0.117 c/γ0,
while ignoring the second peak. The amplitude of the
electrostatic seed wave is 5×109V/m, which is associated
with a 50% electron density oscillation. Its wavelength is
0.4µm, so that kp = 2ka.

Note that, immediately after the interaction, a probe
beam is generated [see Fig. 3(a)]. For comparison, we
also show the numerical solution of Eq. (1). The com-
parison indicates that the plasma seed indeed triggers
the Raman amplification like a laser seed does. No pre-
cursors are observed, but the moving window would sup-
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FIG. 3. (Color online). Amplified probe pulses using a plasma
seed (blue solid line) and a laser seed (red dashed line) at in-
teraction time t = 50fs (a) and t = 8.5ps (b). (c) Comparison
of the amplified probe pulse peak intensity. The thick solid
and dashed lines are PIC simulations; and the thin dotted-
dash lines are fluid-model simulations using Eqs.(1).
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press those. In Fig. 3(c), which shows the growth of the
peak intensity, we identify the linear stage amplification
(before ∼ 4.5ps), exhibiting an intensity exponentially
increasing in time (or distance) and the nonlinear stage
(after ∼ 4.5ps), exhibiting a quadratically increasing in-
tensity. After an amplification time of 8.5 ps, the lead-
ing spikes of the probes shown in Fig. 3(b) both reach
40PWcm−2, which is 100 times higher than the pump
intensity. The pump depletion at the probe peak is 75%
for both seeds. The agreement between the PIC simula-
tions with plasma and laser seeds is very good for both
the leading peak envelopes [Fig. 3(b)] and the maximum
intensity [Fig. 3(c)]. They also decently match the nu-
merical solutions of Eq. (1), although PIC simulations
show asymptotically lower peak intensities. The discrep-
ancy might be due to kinetic effects that are taken into
account in PIC, but not in the fluid model, or due to the
envelope approximation in the fluid model.

For higher plasma density where GVD becomes im-
portant, one can advantageously chirp the laser seed to
reduce the required plasma length [22]. Since higher fre-
quency components propagate faster, the front of the
chirped probe sharpens due to GVD. It is of interest to
inquire whether the same advantages can accrue for a
plasma wave seed. In fact, for plasma seeds, the advan-
tageous chirping effects can be accomplished by chirping
the wavelength of the plasma wave. When it scatters off
the monochromatic pump, the generated probe is also
chirped and hence can contract due to GVD.

To show this, we modify Eq. (1) by including the
GVD term for the probe [22] bt + cbbz = V af∗ + iκbtt,
where κ = (1/2cb)(∂cb/∂ωb) = ω2

p/(2cbωb) and cb is
the group velocity of the seed. In Fig. 4, we compare
amplification in a high density plasma with a chirped
plasma seed to amplification with a non-chirped plasma
seed. The parameters are chosen similar to those in
Ref. [22], i.e., ne = 12 × 1020cm−3, λa = 0.351µm,
Ia = 12.2PWcm−2 and the plasma length is 90µm.
The plasma seeds are both Gaussian with FWHM of
1.8µm. The nonchirped seed has a uniform wavevec-

FIG. 4. (Color online). (a) Amplified probe beams triggered
by chirped (blue solid) and non-chirped (red dashed) plasma
seeds with a 600 fs pump pulse; (b) growth of the peak inten-
sities. The seed amplitudes and shapes are identical.

tor kf = ka + kb = 2π/0.215µm. Its output intensity
reaches 2.8EWcm−2. Here, the wavevector, kf , of the
chirped plasma seed increased 3.5% per µm, where pump
interacts with lower kf first. Since the pump has a con-
stant frequency, the generated probe is also chirped with
smaller wavenumbers (smaller frequencies) at the front.
Due to GVD, the probe contracts when traveling through
the plasma. Similar to the case of a chirped laser seed
[22], the probe beam has a larger growth rate and its
intensity reaches 4 EWcm−2. From Fig. 4(a), we also
observe an appropriately narrower probe pulse.

Can any laser seed be replaced by an equivalent plasma
wave seed? Clearly, for a seed laser pulse envelope that is
not differentiable, the formal equivalent plasma seed en-
velope according to Eq. (7) does not exist. However, this
restriction on shape is not important, since the seed laser
pulse need be no more sharp than a Gaussian in order
to access the π-pulse, pump depletion regime [20], for
which equivalent plasma seeds do exist. More relevant
is the restriction on the amplitude; while a seed laser
pulse envelope can take an arbitrarily large amplitude,
the Langmuir wave seed amplitude will be limited by the
wavebreaking limit. In a cold plasma, this condition is
equivalent to a maximum density variation δn < n0; in
a warm plasma the density variation is somewhat more
limited [28, 29]. However, this will not be an issue in
the main amplification regimes [30] for which the neces-
sary laser seeding amplitudes can be small [31]. Also,
even a small plasma wave seed can access operation near
the wave breaking limit [32, 33], since that limit is de-
termined by the pump amplitude, not the seed ampli-
tude. The density restriction may be an issue though
in the so-called quasi-transient regime, where damping
of the Langmuir wave is significant, so amplification is
achieved only with larger laser seed amplitudes [34]. The
corresponding amplitudes may then not be available for
plasma wave seeds. However, these regimes are in any
event not of interest for plasma wave seeding, since, if
the plasma wave is heavily damped, the advantage of
synchronization is absent.

In summary, a Langmuir wave seed can, in principle,
replace almost any useful laser seed in backward Raman
amplifiers, generating a probe beam that has an identical
wavefront. The method can also be generalized by using a
chirped plasma wave wavelength to mimic the frequency
chirping of a laser seed. These predictions are supported
by hydrodynamic and fully kinetic 1D-PIC simulations.
The promise of this method is that it represents an alter-
native technology in implementing compression of high
intensity lasers in plasma, with a particular advantage
concerning timing of the pulses.

Although the technological production of the plasma
wave seed is beyond the scope of this work, one straight-
forward methodology would be to employ low power, high
quality, counterpropagating laser pulses to produce the
plasma wave seed; this seed would then linger in the
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plasma (it has near zero group velocity), until the high
power pump laser (which needs not be of high quality)
excites the parametric interaction. In a plasma setting,
localized plasma waves have been generated by stimu-
lated Raman scattering using a tightly focused intense
laser pulse in preformed plasma [35–38]. The ability of
plasma wave seeds to linger in plasma and then to scat-
ter laser energy has already been exploited in a variety of
settings, including plasma holography [39], plasma grat-
ings [40] and plasma photonic crystals [41, 42]. In dy-
namic Brillouin gratings in optical fibers and photonic
chips [43, 44], the acoustic mode, playing the role of the
plasma wave, can be arranged similarly to retain infor-
mation. While the plasma seed is lingering, it might
be manipulated to better serve as a seed, for example,
through autoresonant techniques [45]. The possibilities
outlined here should serve to stimulate the optimizing of
means for generating the plasma wave seed. Moreover,
the methodology offered here can be generalized to other
waves with negligible group velocity that might mediate
high intensity laser compression in plasma, such as, for
example, the ion acoustic wave for compression by stim-
ulated Brillouin scattering.

This work was supported by NNSA Grant No. DE-
NA0002948, and AFOSR Grant No. FA9550-15-1-0391.
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