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The exact nondipole Volkov solutions to the Schrödinger equation and Pauli equation are found,
based on which a strong field theory beyond the dipole approximation is built for describing the
nondipole effects in nonrelativistic laser driven electron dynamics. This theory is applied to investi-
gate momentum partition laws for multiphoton and tunneling ionization, and explicitly shows that
the complex interplay of laser field and Coulomb action may reverse the expected photoelectron
momentum along the laser propagation direction. The magnetic-spin coupling does not bring ob-
servable effects on the photoelectron momentum distribution and can be neglected. Compared to
the strong field approximation within the dipole approximation, this theory works in a much wider
range of laser parameters and lays a solid foundation for describing nonrelativistic electron dynamics
in both short wavelength and midinfrared regimes where nondipole effects are unavoidable.

PACS numbers: 42.50.Hz 42.65.Re 82.30.Lp

Two kinds of processes are very fundamental in ultra-
fast laser-atom/molecule interactions, i.e., the deposition
of photon energies into atoms and molecules, and the
transfer of photon linear momentum into targets. Plenty
of studies focused on the energy deposition and a series
of intriguing ultrafast phenomena were explored, such as
tunneling ionization [1], high harmonic generation and
its synthesization of attosecond light pulses [2], nonse-
quential double ionization [3], coherent control of elec-
tron localization [4–7], energy sharing between electrons
and nuclei [8]. For the second one, the transfer of pho-
ton linear momentum attracts much less attentions due
to the fact that a photon is not an effective momentum
carrier as compared to a nonrelativistic electron.

Thanks to the detection technics with high resolutions
developed recently, Smeenk et al. [9] and Ludwig et al.

[10] reported that photoelectrons acquire the momentum
shift along the direction of laser propagation (termed as
longitudinal momentum shift in the rest of the letter)
during tunneling ionization, and this photon momentum
transfer is also reported in the time-dependent Dirac
equation simulation [11], time-dependent Schrödinger
equation (TDSE) simulations [12, 13], classical trajectory
Monte Carlo calculations [14]. Some characters of the
longitudinal momentum shift [15–20] were explored by
calculations of strong field approximation (SFA). Though
it is well recognized that the longitudinal momentum
shift must be due to the nondipole laser-atom coupling,
the exact nondipole Volkov solution was not built in these
studies. To circumvent this obstacle, some attempts have
been tried. Chelkowski et al. adopted the Volkov solu-
tion of the Klein-Gordon equation in their SFA calcula-
tions [19]. Krajewska et al. made analogous with quan-
tum electrodynamics in obtaining the transition ampli-
tude [21]. Cricchio and others rewrote the space-time de-
pendent laser vector potential as A(x, t) ≈ A(t) + z

cE(t)
[18, 22–24]. Here, A(t) and E(t) are the dipole approxi-

mated laser vector potential and laser electric field, and
c is the light speed. To build a self-consistent strong field
theory beyond the dipole approximation is still difficult
because there is no exact nondipole Volkov wave func-
tion to the Schrödinger equation till today, though the
Volkov solution to the Schrödinger equation within the
dipole approximation had been obtained around eighty
years ago.
In this letter, we analytically solved the TDSE for a

free electron in a monochromatic laser field and achieved
the exact nondipole Volkov solution. Based on this, we
built the nondipole SFA theory, which is then applied to
describe how the electron acquires the momentum along
the laser propagation direction, and how the rescattering
alters the photon momentum partition between electrons
and nuclei. For very wide ranges of laser parameters, this
theory is self consistent, and is able to grasp the main
dynamics and offer intuitive physical explanations with
easy computations.
We used the light cone coordinate η = t− z

c to describe
the laser pulse by assuming it propagates along the z
axis. The components of the laser vector potential are
A(r, t) = A(η) = (Ax(η), Ay(η), 0). The behavior of a
free electron embedded in such a laser field is described
by the TDSE as (atomic units (a.u.) are used unless
stated otherwise)
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with p being the electron momentum operator. We con-
jectured that the Volkov solution of Eq. (1) has the form
ψV (r, t) = exp(−iEpt + ip · r)f(η) with Ep = 1

2p
2 and

f(η) is temporarily unknown. Inserting the conjectured
ψV (r, t) into Eq. (1) yields the governed equation for
f(η)
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f ′(η) = HI(η)f(η)−
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2c2
f ′′(η) (2)
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with the interaction Hamiltonian HI(η) = A(η) · p +
1
2A

2(η). The solution of Eq. (2) is f(η) = G(η)f0(η)

with f0(η) = exp
[
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]
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with T being the ordering

operator [26]. For any general function F (ξ),
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In the above expressions, the differential operator acts

on all the later terms, i.e., F (ξ1)
[

∫ ξ1
ξ0
dξ2F (ξ2)

]

∼
d2

dξ2
1

[

f0(ξ1)
∫ ξ1
ξ0
dξ2F (ξ2)

]

. The exact Volkov solution be-

yond the dipole approximation is thus achieved.
With the analytical expression of the nondipole Volkov

state, one may write down the transition amplitude be-
yond the dipole approximation

W (1)(p) = −i
∫ tf

t0

dηG∗(η)[A(η) · p+
1

2
A2(η)] (4)

exp[i(Sp(η) + Ipη)]φ̃0

(

p⊥, pz −
Ep + Ip

c

)

where Sp(η) =
∫ η

dt[Ep +
A(t)·p+ 1

2
A2(t)

1−pz/c
] is the Volkov

phase, and φ̃0(p) =
∫

dr exp(−ip · r)φ0(r). One may rec-
ognize that Eq. (4) changes into the dipole transition
amplitude as c→ +∞.
Since the Schrödinger equation is the nonrelativistic

version of the Klein-Gordon equation by truncating the
terms at ∼ 1

c2 when expanding H =
√

m2c4 + p2c2 =

mc2 + p2

2m + O( 1
c2 ), only the correction up to O(1c ) in

our SFA theory should be anticipated after considering
the nondipole effect, and the correction higher than the
order of O(1c ) is logically unnecessary. One may note
that f0(η) is already corrected up to the order of O(1c ),
thus only the leading term in the right hand side of Eq.
(3) is important.

Calculation Schemes 〈pz〉 (a.u.)
Dipole Approximation 0
Exact Calculation 6.8 ×10−3

G(η) →1 6.8 ×10−3

G(η) →1 & 1

1−
pz
c

→ 1 + pz

c
6.8 ×10−3

G(η) →1 & 1

1−
pz
c

→ 1 5.3 ×10−4

TABLE I. The expected value of longitudinal momenta 〈pz〉
calculated with different schemes. In these calculations, a
wavelength 1400 nm right-handed circularly polarized laser
pulse with the intensity 1014 W/cm2 is used and the target
hydrogen atom is in the ground state.

With the nondipole SFA, one may calculate the longi-
tudinal momentum shift induced by the nondipole cou-

pling. We treated the transition amplitude given by Eq.
(4) in different forms, for example, replacing the term

1
1− pz

c

by 1 + pz

c , or only keeping the leading term of

Eq. (3), i.e. G(η) → 1. The numerically calculated
expected values (denoted by 〈〉) of longitudinal momenta
〈pz〉 are summarized in Table I. The used laser pulse is
right-handed circularly polarized, and the intensity and
wavelength are 1014 W/cm2 and 1400 nm, and the ini-
tial state is the ground state of a hydrogen atom. These
laser parameters are similar to those used in Ref. [9, 19],

and the law 〈pz〉 ≈ 〈Ep〉+0.3Ip
c is reproduced, where 〈Ep〉

is the expected kinetic energy of the photoelectron. The
deviation of the exact result and approximated results is
within the order of ∼ 1

c2 , which is consistent with our
analysis. The simulation results confirm that taking the
leading term in the Dyson expression of G(η) will not
bring any observable error with the current experimental
detection resolution. Hence, in the later calculations, we
simply set G(η) = 1 in the nondipole Volkov state. More
properties of G(η) is presented in Ref. [27].
Gauge invariance is not preserved in the nondipole

SFA. In length gauge, with the same parameters used

in Table I, we reached 〈pz〉 ≈ 〈Ep〉+
1
3
Ip

c [18]. Though the
velocity gauge is more intuitive to describe results, the
length gauge is more quantitatively accurate in this re-
search. Actually, the SFA in the velocity gauge gives
identical photoelectron momentum distributions when
the initial state has opposite magnetic quantum num-
bers and the laser pulse is circularly polarized, which
contradicts to the known facts [30, 31]. Thus all sub-
sequent numerical calculations are carried out in length
gauge in this paper. With an unitary phase transforma-
tion exp[iA(η) ·x], the transition amplitude in the length
gauge is obtained

W
(1)
L (p) = −i

∫ tf

t0

dη exp[i(Sp(η) + Ipη)](1 −
pz

c
)

E(η) · i ∂
∂k
φ̃0(k) |k=(p⊥+A(η),pz−

Ep+Ip
c

)
,

(5)

where E(η) = − ∂
∂tA(η) is the electric field.

As one of application examples, we used the nondipole
SFA theory to investigate the photon momenta partition
between nuclei and electrons. For an electron initially
in the ground state of the hydrogen atom (n, l,m) =
(1, 0, 0), applying Eq. (4) with the plane wave laser for
the single-photon ionization limit and the imaginary time
method [32] in the tunneling ionization limit (where the
electric field is treated quasi-static and magnetic field
treated via perturbations), we obtained the analytical
formula

〈pz〉s =
8

5

〈Ep〉
c(1− Up

ω )
− Up

c
, 〈pz〉t =

〈Ep〉+ Ip

c
, (6)

where Up =
∫

T

0
dt 1

2
A2(t)

T is the ponderomotive energy, i.e.,
the averaged quiver kinetic energy, and T and ω are the
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FIG. 1. (a) The fitted (a) α, (b)β and (c) γ as a function of
the absorbed photon numberN . The laser intensity is fixed at
1014 W/cm2, and the initial electronic state is the hydrogen
ground state (n, l,m) = (1, 0, 0).

optical period and frequency, respectively. The omission

of Up terms makes 〈pz〉s = 8
5
〈Ep〉
c [19]. For the tunnel-

ing ionization, the first term of 〈pz〉t originates from the
classical electron electrodynamics in the continuum and
the second term of 〈pz〉t is contributed by the under-the-
barrier dynamics [33]. 〈pz〉t is affected by the detail of
the under-the-barrier dynamics [19, 33], where the laser
intensity and electronic state play a role. More details
on the formula derivations and discussions can be found
in the supplemental file [27].
Between these two limiting cases, the expected longi-

tudinal momentum shift can be formulated as

〈pz〉 =
α〈Ep〉+ βIp + γUp

c
(7)

where α, β and γ are fitting parameters depending on
the absorbed photon number N , which is determined by

the floor function N =
⌊

Ip
ω

⌋

+1. To calibrate the N -

dependent α, β and γ, we finely tuned the laser frequency
ω within [

Ip
N ,

Ip
N−1 ], and fit 〈pz〉 expressed by Eq. (7)

to obtain α, β and γ for a certain N . Figure 1 shows
the fitted α, β and γ. Here, the laser pulse is circularly
polarized and its intensity is 1014 W/cm2. The initial
state is the ground state of the hydrogen atom. The fitted
parameters α = 1.6, β = 0 for N=1 are consistent with
the analytical results. However, at such situation 〈pz〉 ≈
4×10−3 a.u., while

Up

c ≈ 4×10−6 a.u. is numerically too
small to extract γ accurately by the least squares fitting
method adopted here. Thus, in Figure 1 (c) we fit γ for

N ≥ 4 where
Up

c is relatively large and the extracted γ
is reliable. With the increasing of N , we observed the
tendencies α → 1, γ → 0 and β → 1

3 . The asymptotic
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FIG. 2. (a)〈pz〉 and (b)∆pz as a function of the laser intensity.
The laser wavelength is 1400 nm and right-handed circularly
polarized. (a) and (b) share the same graph legend.

value of β agrees with that obtained in [33], where the
short range potential was used.

To gain more insights into how the momentum is par-
titioned in the tunneling regime, in Fig. 2 (a) we plotted
〈pz〉 as a function of the laser intensity when the elec-
tron is initially in different states. The laser is right-
handed circularly polarized and the wavelength is 1400
nm. The calculated intensity-dependent 〈pz〉 shares the
similar shape as measured in Ref. [9]. When the inten-
sity is larger than 3 × 1013 W/cm2, α approaches to 1
and γ approaches to 0, however, the varying β results
in the deviation of the linear relationship between 〈pz〉
and the laser intensity. The β response can be more

clearly seen in Fig. 2 (b), where ∆pz = 〈pz〉 − 〈Ep〉
c

is plotted. It is clear that β ≈ 1
3 only holds for the

initial state (n, l,m) = (1, 0, 0) in strong laser pulses.
This could be due to the fact that the electronic state of
(n, l,m) = (1, 0, 0) is somehow close to the bound state
of a short range potential. Our simulations also demon-
strate the photon-momentum partition closely relates to
the initial angular momentum. It is also interesting to
note while curves of (2,1,1) and (2, 1,−1) are different
in Fig. 2(a), they are overlapped in Fig. 2(b). This
conclusion also works for other (n, l,±m) pairs.

The longitudinal momentum shift is more complicated
if the driving laser pulse is linearly polarized since the
rescattering occurs and the Coulomb potential plays an
important role. We thus extended the nondipole SFA
theory by including the Coulomb potential via the first-
order Born approximation [34]. Similarly, the transition
amplitude after taking into account the Coulomb poten-
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tial in the nondipole SFA is written as

W (2)(p) = (−i)2
∫ tf

t0

dτ ′
∫ τ ′

t0

dτ

∫

d3k

(2π)3
(8)

×〈pV (τ
′) |Vc |kV (τ

′)〉〈kV (τ) |HI (τ) |φ0(τ)〉

where |kV 〉 is the intermediate nondipole Volkov state,
and Vc is the Coulomb potential. After more arithmetic
calculations, Eq. (8) changes into

W (2)(p) = (−i)2
∫

d3k

(2π)3

∫ tf

t0

dx1

∫ x1

t0

dx2HI(x2)

× exp [i(Sp(x1)− Sk(x1) + Sk(x2) + Ipx2)]

×Ṽc(p⊥ − k⊥, pz − kz −
Ep − Ek

c
)

×φ̃0(k⊥, kz −
Ek + Ip

c
), (9)

where Ṽc ∝ 1
(p−k)2+σ is the Fourier transformation of

Vc = − 1
|r| exp(−

√
σ|r|) and σ is the screening parameter

for the Coulomb potential. Equation (9) is identical to
Eq. (8) in the sense that the contribution of a finite target
size is negligible [27]. The integral over the intermediate
nondipole Volkov state |kV 〉 is carried out via the steep-
est descents method with the saddle points determined
by ▽k[Sk(x1)−Sk(x2)] = 0, which means the integral of
Eq. (9) is dominated by events that electrons released at
x2 and come back to the nuclei at x1. The scaled momen-

tum distribution
∫

dp⊥

∣

∣W (1)(p) +W (2)(p)
∣

∣

2
are plotted

in Fig. 3 (a). The narrower momentum distribution for
smaller σ is due to the stronger Coulomb focusing effect.
Note that W ≈W (1) +W (2) diverges for σ < 1 and con-
verges for σ ≥ 1, and thus the curves for σ = 0.1 and
0.01 deviate from the real physics. The divergency could
possibly be cured by summing divergent terms into an
unitary phase [35].
We plotted 〈pz〉 as a function of the laser intensity

by including both the direct and rescattering ionization
events in Fig. 3 (b). The laser field is linearly polar-
ized and the wavelength is 3400 nm, as used in the ex-
periment [10]. Similar to Fig. 2 (a) where the circu-
larly polarized laser pulse is used, the overall shift of
the expected longitudinal momentum increases with the
increasing of the laser intensity. Note that Fig. 3 (b)
presents 〈pz〉 while Ref. [10] presented the peak offset of
the photoelectron longitudinal momentum distribution.
The calculated peak shift of the photoelectron longitu-
dinal momentum distribution as a function of the laser
intensity is shown in the supplemental file [27]. Figure 3
(c) shows 〈pz〉 by only including the rescattering events.
We reminded that the curves of σ < 1 do not express the
physics correctly, while the converged results of σ = 1
or 2 clearly depict the negative shift of 〈pz〉 induced by
rescattering.
So far the electronic spin dynamics is not touched. The

spin-magnetic coupling is in the order of O(1c ), same
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FIG. 3. (a) The scaled longitudinal momentum distribution
when different screening parameters σ are used. (b) 〈pz〉 as a
function of the laser intensity, in which calculations both the
direct and rescattering ionization events are included. (c) 〈pz〉
as a function of the laser intensity, where only rescattering
events are taken into account. (a), (b) and (c) share the same
graph legend.

as the leading order of the electric nondipole coupling.
Thus, it is conceptually important to note that the break
down of the diploe approximation at the nonrelativis-
tic regime also implies the break down of the spin-0 ap-
proximation for electrons. To study the nondipole ef-
fect in photoionization more completely, we extended the
Schrödinger equation to the Pauli equation by including
the spin-magnetic coupling

i
∂

∂t
φ(r, t) =

[

1

2
(p+A(η))

2
+

σ

2
·B(η)

]

φ(r, t), (10)

where σ is the Pauli matrix and the magnetic field
B(η) = ∇ × A(η). The solution to Eq. (10) is of the
form

φp,ξ(r, t) = exp(−iEpt+ ip · r)GM (η)F0(η)uξ, (11)

where F0(η) = exp

(

0 A−

A+ 0

)

f0(η) with A±(η) =

∓Ax(η)±iAy(η)
2c(1−pz/c)

and uξ stands for the spinor basis

(

1
0

)

and

(

0
1

)

. The matrix function is GM (η) =

T

{

exp(i
∫ η

dξ
F †

0
(ξ) d2

dξ2
F0(ξ))

2c2(1−pz/c)

}

. Following same proce-

dures applied for spin-0 particles, one may obtain the
transition amplitude containing the spin-magnetic cou-
pling. The longitudinal momenta 〈pz〉 associated with
different spin evolution channels are summarized in Ta-
ble II. The laser parameters are chosen to be of wave-
length 1400 nm, intensity 1014 W/cm2 and right-handed



5

circularly polarized. The probability of spin flip is pro-
portional to Iω2 with I being the intensity. For parame-
ters used in this paper and recent published experimen-
tal results [31], the probability of spin flip is significantly
smaller than that of spin preservation. One may clearly
see from Table II that the introduction of spin in the
photoionization does not bring much difference for the
longitudinal momentum shift.

Channels 〈pz〉 (a.u.) Scaled Probability
spin up → spin up 0.0072 1
spin up → spin down 0.0075 6.8×10−6

spin down → spin up 0.0074 3.7×10−5

spin down → spin down 0.0072 1
spin-0 approximation 0.0072 1

TABLE II. Spin-channel-resolved scaled transition probabili-
ties and the corresponding 〈pz〉.

In conclusion, the standard nondipole SFA theory
with or without rescattering is built based on the ex-
act nondipole Volkov wave function in nonrelativistic
regimes. This theory can quantitatively reproduce the
experimentally measured longitudinal momentum shift
driven by linearly and circularly polarized laser pulses
and disentangle the contributions of direct and rescat-
tering ionization. Our work could be further extended
to study processes such as high harmonic generations,
nonsequential double ionization and electron holography
when nondipole effects are unavoidable. Thus, this work
provides a solid foundation for researches of laser-matter
interactions, especially for the ultrafast processes trig-
gered by strong midinfrared laser pulses which are pop-
ularly used in nowadays.
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Morales, M. F. Kling, W. Siu, O. Ghafur, P. Johnsson, M.
Swoboda, E. Benedetti, F. Ferrari, F. Lépine, J. L. Sanz-
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